Manual
SoftMaker Office 2024 and NX

BasicMaker

© 1987-2025 SoftMaker Software GmbH

Table of Contents

Welcome! 9
What 1S BaSICIMAKEI?c.eeiiiiiiiiiiieieee ettt ettt ettt s iae et e e s e et e s aaeenbeeenseenees 10
Using the script editor 11
Starting BaSICIMAKETcccuiiiiiiiiieiiecieeiie ettt ettt ettt ettt e et esabeesbeesabeeteesraeenbeenns 11
Commands on the File ribbon tabccccciiiiiiiiiiiiiiii e 12
Using the file MANAZETccieiiiiiiiiiiieieee ettt ettt saeesbeesaaeesaesneeas 13
Commands on the HOmE ribbon tabc.cooiieiiiiiiiiiiieciice e 15
Searching and replacing in the SCript €ditorcceeeciiiiiieiiiieiieriieieee e 17
Bookmarks and the Go to... coOMMANAccceeiiiiiieiiieiieee e 18
USING SMATTTEXE ..eeiiieiieiiiieiiieeieeite sttt ettt e sttt e it estbeebeeseaeebeesaseesseessseeseessseenseesssesseesnseas 19
Commands on the VIew ribDON tabccooiiiiiiiiiiiiiiiiecce e 20
Commands on the Quick acCess tOOIDATcccueiiiiuiiiiiieiciee et 21
Changing the settings of the SCIIPt €dItOTcccuieiiiiiiiiiiieiiee e 22
EXporting/importing SETHNEScccueerieriiierieeieeieeeteertiesteesteesteeteesaeesseessteesseessseesaessseanseessseenses 25
STATTINZ SCTIPLS ..eeuvrerurietieeieeitteeteette ettt erteeeteeteessbeeseessteesseeasseeseessseanseessseensaessseenseasssesnseensseenseanes 28
DEDUZZING SCIIPLS .uveeivieiieeiiietieeieerite et ette st e et e steebeessbe e beessbeesseessseenseessseanseessseensaesnseenseessseenses 28
Running a SCript StEP DY SLEP ..evuvieuieiiieiieiiieiieete ettt ettt ettt et e st siaeesbeesaaeesaesneeas 28
USING DIEAKPOINTSeiiuiiiiiieiiecie ettt ettt ettt e et siteebeesabeeseessaeenbeesnseenseennseas 29
WatChing VATIADIESc..ooiiiiiiiiiiieiecie ettt ettt ettt e et e st e et e s abeenbeesnseenseennseas 29
USINg the dialo@ @dILOTcccuieiiiiiiiiieeie ettt ettt e eite et esabeeteesaaeenseesnneenees 30
General INFOTMALIONcciiiiiiiiiiiiieiie ettt ettt ettt e st e s beesteessbeeseesnbeeseesnseenseans 30
Opening/closing the dialog €ditOrc.coeciieiiiiiiiiiiieeii et 30
Commands in the File menu of the dialog editorcccooviieiiiiiiiiiiieeeee e 31
Commands in the Edit menu of the dialog editorccooviieiiiiiiiiiiiiiieeieeeeeeeee 32
Commands in the Insert menu of the dialog editorcccueeeiieiiiiiiienieeieeeeeee e 33
Language elements of SoftMaker Basic 36
Syntax fundameEntalsccceeiiiiiiiiiiiiieiie ettt st b e b et esraeebea e 36
DALA CYPES -.veeeitieeiiie ettt et et e et e ettt e et e e e bt e e e bt e e abee e nbeeeabeeenteeennes 38
Special behavior of the Variant data typeccoceeeiiiiieiiiieieieeece e 38
User-defined data tyPESoeoieeiieiieiii ettt ettt sttt et e s et eeaee s 39
VATTIADIES ..ottt ettt st b et h ettt sa e bt et e it enaeea 40
AATTAYS etteeiite ettt ettt ettt e ettt e ettt e e bt e e ettt e e e ab e e e ab e e e at e e e bt e e e bt e e e bt e e e bt e e eateeeeabeeeaabte e nbeeennbeeenteeennes 40
OPETALOTS ..eeiuiiieeitee ettt ettt et e et ee ettt e ettt e sttt esabteesabeeesabee e steesanteesasteesasteeanseeeanseeeaseeensseessseesnnreenn 41
FLOW CONEIOL ..ttt ettt et st b et s bt et et saeenbe et e saeenaeens 43
Subroutines and fUNCLIONScuieruiiiiiiiiiieiiieie ettt ettt et e st e et e e sbeesbeesaaeesaessaeenseanes 45
Passing parameters via ByRef or ByValcccoooiiiiiiiiiiiiieeeeee e 46
Calling functions 1N DILLSc.cociiiiiiiiiieiieeie ettt ettt et et beesbeeteesnbeebeeseseenseeeneeas 46
FlE OPEIALIONSeiouiiiiiieiieeit ettt ettt e et e st e e bt e s tbeebeeesbeesbeeesbeenseesnseenseensseenses 47
DALOZ DOXES ..ttt ettt ettt et et et s e e bt e e ab e e beeeabeenbeeesbe e bt e enbeenbeeenbeenteeenteenbeeenneenses 47
Dial0@ AETINTEION ...oviiiiiiiiiiieiieeie ettt ettt et e et e st e et e e sabeeseesaaeenseessseensaennsean 47

Table of Contents

Controls 0f @ dIAlOZ DOXeeviiiiiiiiiiiie ettt ettt ettt e b e e beesaeenbeenee e 48
CommAand DULLOMNSooueeiiiiieitieieiteriee ettt sttt ettt ettt sbe e saeeneeens 49
TexXt and INPUL DOXES ..ecuvieiiiieiieiieeiierie ettt ettt ettt e bt e st e e e e saaeebeessseenseesnseas 50
List boxes, combo boxes and drop-down liStScccceevieriieiiieriiiiiieiecie e 50
CRECK DOXES ..ttt ettt ettt s b ettt sae et eaee b ens 52
Radio buttons and Sroup DOXESccceeriiiiiiiiiiiiieie ettt 53

The dialog fUNCLION ...c.eiiieiieiieiii ettt ettt e et e eabe e beeenbeeseesnseenseaes 54

OLE AULOMATION ..outtiutiiiiiitiiiiiiiesieet ettt sttt ettt ettt sb ettt e sb e et ea e e s bt et e eatesbeeaeesaesbeenseenee 56
BasicMaker and TextMaker 59
Programming TEXtIMAKETccccuiiiiiiiiiieiieiieeieeeee ettt ettt et e ae et e siaeesbeesnaeeseeenaeenseesnneenses 59

Connecting to TEXTMAKETccuiiiiiiiiiiiiiiie ettt ettt e e beeaeesabeeaee e 60

Getting and setting TeXtMaKer PrOPETLISScccveecuierieerieerieeiieniieeieeniieeaeeieeeseenseesnseeseenes 61

Using TextMaker’s MEthOdSc.cooiiiiiiiiiieiiecie ettt s 61

Using pointers t0 Other ODJECLSccioiiiiiiiiiieiieiie ettt et et e e e beeeane s 62

USING COLLECLIONS ..uvvieiiieiiiieiieeiieeiie ettt ettt ettt e ette e beesate e teesaaeesseassseenseessseenseasssesnseennsenn 62

Hints for sSImplifying NOTAtIONScc.eeiiieriiieriieiieeiie ettt ettt e sae e sebeebeeseaeeseesaeeas 64

TextMaker’s 0DJECt MOAE]ooiuiiiiiiiiieiiee ettt ettt e et ebeesaneeseeenae s 66

APPLCAION (ODJECL) ..iivtiiiiiiiieiii ettt ettt ettt et e st e et e e s ebeeseeesaeenbeesnbeensaesnseas 68

OPHONS (ODJECT) .veieiieiieiiiieiieeiie et ete et e ette et estteeteestteebeesteeesbeesseessseenseesnseenseessseeseessseenseanns 75

USerProperties (COILECLION)ccuiiruiiiiieiieiit ettt ettt ettt eeeaeesbeesaaeensaesaeeas 79

USETPTOPEITY (ODJECT) 1enviiiiieiieeiie ettt ettt ettt ettt et et e et e st e esbeeseaeeseesabeenbeessseensaennsean 81

CommandBars (COIECTION)cc.uiiiiiiiiiieiieiie ettt ere e et e eseesaaeeaee e 82

CommandBar (ODJECT) ...cuveeiieiiieiiieiie ettt ettt et ettt e et e e beesteessbeebeesnseeseesnreenseens 84

AULOCOTTECT (ODJECL) .vviiiiieiieeiieeiie ettt et ettt e et e et e st e e teesabeesbeessseeseessseenseassseenseennsean 85

AutoCorrectENtries (COIECHION) ...c..uiiiviiiiiiicciee ettt e e eear e e e aae e 87

AUtOCOTTECTENITY (ODJECT) .iouvieiiieiieiiteiie ettt ettt ettt ettt et e s eteeteessaeenbeesnseensaenneeas 89

Documents (COIECTION)uiiiuiiiiiieiieiiieiie ettt ettt et sate et e s e e beessaeesbeesaseenseenneeas 91

DOCUMENE (ODJECL) .vvieuiiieiiieiiieiie ettt ettt ettt et e et e et e s ae e beesaaeesbeessbeeseesnseenseesssesnseennseas 94

DocumentProperties (COLLECHION)c.eeeiuiiiiiiiieiieeieee ettt 103

DocumentProperty (ODJECT)ccuuieuieriieiieeie ettt ettt sttt e e eae e s e snseenes 105

PageSetup (ODJECT) ..evierieeiiieiieeie ettt ettt ettt ettt et et e et e et e enbeeseeenbeenneeenneennes 108

SEIECTION (ODJECL) ..vieurieiiieiieeiie ettt ettt ettt et et e et e e eebeesaeesabe e seeenbeeseesnbeensaesnseenseans 111

FONE (ODJECL) 1.ttt ettt ettt et et e et e e bt e esbeeseeenbeenseesnneennes 118

Paragraphs (COIECHION) ..cc.eiiiiiiiiieiieiie ettt ettt et ettt eente e b e saaeenes 124

Paragraph (ODJECT)vieeieiiieiieeie ettt ettt et ettt ettt eabe b enneenns 125

RANGE (ODJECL) oottt ettt ettt e et e et e e ebe e bt e esbeeseeenseenseesnseennes 131

DIOPCAP (ODJECL) eeneiieiiieiieeiieeie ettt ettt ettt ettt e et e et e esbeebeeesbeenseeenseenseesnseennes 133

Tables (COIECTION) ..eiieiiiiiiiieiiee ettt et e e v e e et e et e e eaaeeeeaaeeetbeeennseesaraeens 135

21 o) (S () o) 1T 3 OO PSPPSR 137

ROWS (COIIECTION) ...vviiiiiieeiiieeiie ettt ettt e et e et e e et e e e b e e e eaaaeesaseeenseeennseeaaneeeas 139

ROW (ODJECT) 1.ttt ettt et ettt ettt st e et e et e e taesabeesseeenbeenseesnseenseennseenses 141

CElIS (COIIECLION) ...vviiieiieeiieeettee ettt e e et e e et e e e aa e e eabe e e aseeeaseeesseeenseeennseesnneeens 143

(015 1 W (0] o] <1v1 LR PSTP PRSP 145

Borders (COLECION)c.vieieiieiieeiie ettt ettt ettt e e et eenbeeteeeaaeenbeesnseenns 148

Table of Contents

27011 (S (10 [<1+1) IO PRSP 151
ShAAING (ODJECL) 1nvvietieiieeiieeie ettt ettt ettt eab e e et e st e e st e enbeeseeenbeeseesnseenseanns 154
FormFields (COIECHION) ...ccviiiiiiiieiie ettt et et e e ar e e eareeeaaeean 157
FOrmEField (ODJECT) ...vieiieiiieiieeiie ettt ettt ettt et e eate e s e snseenes 158
TEXINPUL (ODJECL) .evieiiieiiieiie ettt ettt ettt et e st e et esaae e bt e ssseenseeenbeenseensseenses 162
(011101 4 3700 (010 111) OO P RSP 163
DIOPDOWN (ODJECT) ..vieuviiiiieiieiiie ettt ettt ettt e et esteeeteesaeesabeetaeesseeseeesseenseesnseenseesnseenses 165
LiStENtries (COIECTION) ...ccuviiiiiiieeiieiie ettt ettt ettt e et e e e et esaaaenseesnneenes 166
LIStENIY (ODJECL) weeuviieiieiieeiieeiie ettt ettt ettt st ettt e e bt e esbeesaeenbeenneesnneennes 169
WiINAOWS (COLIECLION) ...vviiiiiiiieiiiieciie ettt ettt e e e e et e e aree e easeeetseeenseeeanaeeas 170
WINAOW (ODJECL) ettt ettt ettt ettt e et e e bt e esbeeseeeneeenseesnseennes 172
VIGW (ODJECT) evieuiieiiieiieeite ettt ettt et ettt et e et e st eeebeesaeeeabeensaeenseenseasnbeenseeenseenseennseenses 176
010311 W (0] o <11) IO PRSP 181
RecentFiles (COLIECTION)ieviiiiiieiieiie ettt et e b e e e enee 182
RECENTFIIE (ODJECT) ..vvieiiieiiieiieeiie ettt ettt et ettt e ssbeeteeeabeenneesnseennes 184
FOntNames (COIECHION) ...cccuviiiiiiiiiiecciie ettt et e e eave e e eaveeenseeeaaaeeas 186
FONENAME (ODJECT) .vvieiiiiiiieiieeiie ettt ettt ettt ettt ettt e et e et eesbeeseeenseenseesnseennes 188
BasicMaker and PlanMaker 190
Programming PlanMaKercccciiiiiiiiiiiiiiie ettt ettt sttt es 190
Connecting to PIanMakKerc.coccviiiiiiiiiiiiiiiii ettt ettt 191
Getting and setting PlanMaker Propertiesccvevieeriieriieniienieeieeeie et 192
Using PlanMaker’s MethodsSccoeiiiiiiiiiiiiiieie et 192
Using pointers t0 Other ODJECESccoiieiiieiiiiiieie et 193
USING COLLECLIONS ..evvvieiiieiiieiieiiieeteeete ettt ettt e ettt e et eesaeesabeetaessseesseessbeenseesnseenseesnseenses 193
Hints for sSImplifying NOtAtIONScccueeiiiiiiiiiiieiieeieeeie ettt ettt eae e e eeneenes 195
PlanMaker's object MOAELc.oooiiiiiiiiieie e 196
APPLCAION (ODJECL) ..ivviiiiieiieeiie ettt ettt ettt et e et e et e et e eseeenbeeneesnseenees 198
OPLONS (ODJECT) .veeivieiieeiiieiie et eete ettt e et e et e et e stte e bt e ssbe e bt e ssbeenseesssaesseansseenseesnseanseensseenses 210
UserProperties (COIECLION)ccuiiiuieiiieiieiie ettt ettt et ettt e eiae e e sneeenes 213
USETPTOPEITY (ODJECT) .uvieiiieiieeiieetieeie ettt ettt ettt ettt e ettt e et e e eesbeesaeenbeenseesnseenes 214
CommandBars (COIECTION)cuiiiuiieiiiiieeiieie ettt et e e enes 216
CommandBar (ODJECT) ...ccuveeruiiiiieiie ettt ettt ettt site et essaeenbeesnaeenbeesnneenes 218
AULOCOTTECT (ODJECL) 1vvieiiieiieiiie ettt ettt ettt et e st e et e e tee st e ebeeesbeeseeenseenseesnseenses 219
AutoCorrectEntries (COIECHION)uiiiviiiiiiicciee ettt e et eeaae e 220
AUtOCOTTECTENIIY (ODJECT) .oovviiiiieiieiie ettt ettt ettt e st e et e snaeeseesnseenes 222
WOrKDOOKS (COILECLION) ..viieiiieiiieiieiie ettt ettt ettt ettt e et eenae e s e snseenes 224
WOTKDOOK (ODJECL) .ttt ettt ettt et e et e e s e eaaeenseesnseenes 228
DocumentProperties (COLLECHION)cc.eieiiiiiuiiiiieiieeieee et 238
DocumentProperty (ODJECT)ccuvieuierieeiieeie ettt ettt te ettt e eeae e s e snseenes 240
Sheets (COLIECTION) ..ouviiiiieiieciie ettt ettt ettt et et e st e et e e eeabeebeesnbeeseesnseenseans 243
SREEL (ODJECT) .nveeiieeiieeiie ettt ettt ettt ettt et et e et e et eeeabeeaeeenbeeseeenseenseesnseenseesnseenseanns 245
PageSetup (ODJECT) ..evieiieiiieiieiie ettt ettt ettt e et e et st e e bt e esbeeteeenteenbeeenneennes 252
RANGE (ODJECL) ittt ettt ettt e et e et e e abeebeeesbeeseeenbeenseesnseennes 258
ROWS (COIIECTION) ...vviiiiiiieeiiieciie ettt ettt et e et e et e e eta e e e baeesaaaeesaseeesseeenseeeaneeens 275

Table of Contents

ColUMNS (COIECTION) ...vviieeiiiieiiie ettt ettt et e et e e e ae e e eaae e e s e e easeeeaaeeeaseeensseeennaeens 277
NumberFormatting (ODJECT)cccuieriieiiieiieeie ettt et ste et e s aeeseesaaeenee e 279
FONE (ODJECL) 1.ttt ettt ettt ettt e et e e bt e enbeeseeeneeenseesnneennes 284
Borders (COLECION)c.viiieiieiieiiie ettt ettt ettt ettt e et essbeeteeenbeenseesnseenns 290
BOTAEr (ODJECL) ittt ettt ettt ettt et b e ettt eenteebeeenneennes 292
ShAAING (ODJECL) w.nvveetieiieeiie ettt ettt et e ettt eeb e et e st e e st e enbeeseeenbeensaesnseenseanns 294
Validation (ODJECT)eecvieriieiieiie ettt ettt ettt et e et e et e e teeesbeebeessbeenseesnseenseesnseennes 297
AULOFTILET (ODJECL) .vvieiiieiiieiieeie ettt ettt ettt et et e et essbeeseeeaseenseesnseenns 304
FAlters (COIIECTION) ..vvieiiieiiieiieeiie ettt ettt ettt et eesb e et e enaeenseesnseenes 305
FAIEET (ODJECT) evieniieiiietieeie ettt ettt ettt ettt et e sae e et e e teeeabeebeeesbeenseeenseenseesnseennes 307
WiINAOWS (COLIECLION) ...vviiiiiiieiiiieciee ettt ettt e e e et e e et e e saaeeeeaseeeaseeenseeearaeens 309
WINAOW (ODJECL) ettt ettt ettt ettt e st e e bt e esbeeseeenseenseesnneennes 310
RecentFiles (COLIECTION)icviiiiiieiieiie ettt ettt ettt e e e s enes 316
RECENTFIIE (ODJECT) ..vvieiiieiiieiieeiie ettt ettt ettt e et eesb e et e eaaeeseesnseenes 319
FOntNames (COIECHION) ...ccuviiiiiiiiiiecciee ettt et e e eave e e areeeaseeeaaeeas 321
FONENAME (ODJECT) .vvieiiiiiiieiieeiie ettt ettt ettt ettt e et e et e e bt e esbeeseeenseenseesnneennes 322
Statements and functions from A to Z 324
HNCIUAE (STALEIMENLE) L..eeiiiiiiiiieiieie ettt ettt et et e et e bt e st e e teeesbeesseesnbeenseesnseenseanes 325
ADS (FUNCHION) 1.ttt ettt ettt ettt et et e et e e bt e eabe e bt e esbeenseesnseenseesnseenseesnseenseesnseenseanes 325
APPACHIVALE (STALEINENL) ..eeuiieiiiiiiiieiieiieetieeie et eette et et e et e e steeebeesteessbe e seessbeeseesnseenseesnseenseanns 326
AppPlanMaker (fUNCLION)ocoviiiiieiieiie ettt ettt et e st e et e st e e bt e esbeeseesaseenseaes 326
AppSoftMakerPresentations (fUNCHION)cccueeoieeriiiiiiieniieiiesie ettt et eeeeeee e e e 327
AppTextMaker (FUNCHION)ccuiiiiieiieiie ettt e et e et e bt e eaaeeseesnaeenseees 327
ASC (TUNCTION) Leniiiiiiieiie ettt ettt ettt ettt e bt et b e et e e stteeabeesseeesbeeseesaseenseeessaenseesnseenseesnseanseanns 328
AN (FUNCEION) 1ttt ettt et et e et estteeabeestteesbeebeesnbeenseessseenseesaseenseesnseenseanns 328
BEEP (STALEIMENL)vieiiieiieiieeiie ettt ettt et et e et eesteeeebeesbeesabeenseeesbeenseesnseenseesnseenseanns 329
Begin Dialog ... End Dialog (Statement)ccceeviieiiieriieiiieniieeieesiie ettt eee e eae e e 329
Call (STALEIMENE) ..eeuviieiiieiieeiieiie et et te et et e et e et e ebeestteesbeesaeeenseessbeenseessseenseesssaanseessseenseesnseenseanes 329
CDDBI (FUNCHION) weiiiiieiiieiie ettt ettt ettt ettt et e st e et esaeeebeessbeeabeessseenseessseenseessseenseessseanseanns 330
CRDIT (STALEINENT) ...eeeuvieiieeiieiieeiteette et et e et eeite et e estteesbeesteeebeessseenseessseenseessseenseassseeseessseeseanns 330
ChDIIVE (SLALEIMEIIL) ...eieutiiiiiieiieeiieetie ettt et e et e et e st e et e este e bt e steeesbeessseenseessseenseessseenseessseanseanns 331
CRI (FUNCHION) 1.ttt ettt ettt et e s eebeestbe e bt e ssaeenseessseenseassseenseesnsaenseanns 332
CINE (FUNCTION) .ttt ettt ettt ettt e et e e st e e bt esaeeeabeessseeaseensseenseessseenseessseenseensseanseanes 332
CLNE (FUNCLION) 1etntieiiiieiie ettt ettt et et e et e st e et e e st e esbeessaeenseessseenseessseenseesssaanseessseenseesnseanseanns 333
CLOSE (SLALBIMEIIL) ...eeuvieiieeiiieiie et eeite ettt e et et e et e e stt e e bt esaaeeabeessbeenseessseenseessseenseassseenseennseenseanns 333
CONSE (SLALEIMEIIL) ..eiiiieiiiiiiieiie ettt ettt ettt e et e st e e bt e st e ebeesateeabeesseeenseessseenseesssesnseensseanseanes 334
COS (TUNCHION) 1.ttt ettt ettt ettt e et et e et e e ateesbeesteeenseessseenseensseenseesssaenseessseenseensseenseanes 334
CreateODbJECt (TUNCTION)ociiiiiiieiieitie ettt ettt ettt e et et e e bt estte e bt e sabeeseessbeenseessseeseessseenseanes 335
CONE (FUNCLION) 1eiitiiiiieiie ettt ettt et et e e bt esteeebeestbe e bt e ssbeenseessseenseessseenseessseenseanes 335
CSHE (TUNCTION) ettt ettt ettt ettt et et e et e e st e e bt esaeeeaseessbeenbeessseenseessseenseessseenseesnseanseanes 336
CUIDITE (FUNCHIOMN) .ttt ettt ettt ettt et et e et e e s taeebeestbeesbeessseenseessseenseessseenseessseanseanes 336
DAte (FUNCLION) ...eiiiiieiieeiieeie ettt ettt et ettt e stt e et e e aee e beesbeessbeenseeesbeenseesnseenseesnseenseanes 336
DateSerial (fUNCLION)c.eoiiieiiiiii ettt ettt ettt e ettt e st e e teessbeeseesnseenseesnseenseanes 337
DateValue (TUNCHIOMN)cccuieiiieiieiiecieeee ettt ettt ettt et e st e et e ssbeeseesnseenseesnseenseans 337

Table of Contents

DAY (FUNCHIOMN) 1.uiiiiiiieiie ettt ettt et et e e e bt e et e e sbeeeebeenbeessseenseesnseenseesaseenseesnseenseanns 337
DEClare (STALEIMENT) ..cuvieiieeiiieiieiie ettt et ette ettt e et estte et eesteeeebeebeessbeeseesnseenseesnseenseesnseenseanns 338
DiaL0Z (FUNCHIOMN) Lvtieiiiiiieeiie ettt ettt e et e st e et e esteeesbeesbeessseenseesnseenseesnseeseesnseenseanns 339
DM (STALEIMEIIL) ..eievvieiieiiieeiie ettt ettt ettt e et e st e et e esteeesbeesbeesnbeenseesnseenseesnseeseesnseenseanns 340
DIZENADIE (STALEIMENT) ..e..vieiiieiiiiiieeiieeie ettt ettt ettt ettt e et e et e st e e teessbeeseesnbeenseesnseenseanns 341
DIETEXt (SLALEIMENLE)vieiieeiiieiieeiie ettt ete et et e et estteebeesteeeebeesteessseeseesnseenseesnseeseesnseenseanns 341
DIZViSIble (STAEMENL)eevuiieiiiiiieeiieiie ettt ettt et et e st e et esteessbeeteesnbeeseesnseenseesnseenseanns 342
DO ... LOOP (STALEIMENL)vieiiieiiiiiieeiieeiie et ste ettt ettt e e et e e bt esteesnbeeteeenseesseesnseenseesnsaenseanns 342
ENd (SLALEIMENL) ..eiiutiiiiiiiieiie ettt ettt ettt ettt e et e bt e st e e teeenbe e bt e sabeeseesnbeenneans 343
EOF (FUNCION) .etiiitieiie ettt ettt ettt et e et e e bt e esbe e bt e ssbeenseessbaenseesnseenseesnseanseanns 344
ETas@ (STALEINENT)vieiuiieiieeiiieiieeiie et eette et ete et et e et e estteebeesbeeesbeeseesnseenseesnseenseesnseenseesnseenseanns 344
EXIt (STALEIMENE) ..eeovvieiieiiieeiieeit ettt ettt et et e et e et e et e esbeeeebeebeessbeenseessseenseesaseenseesnseenseanns 345
EXP (FUNCHOMN) 1.ttt et ettt et et e e ate et eesaeessbeenseeenbeenseesnseenseesnseenseanns 345
FIleCoPY (StAtEIMENL)cecuieieiieiiieiieeiieeiee ettt ettt ettt e et e st e et e e bt e ssbeeteeesseenseesnseenseesnseenseanns 346
FAleLen (TUNCHIOMN) ...ioiiiiiieeiiieiieeie ettt ettt ettt et e et e et e e bt e ssbe e seeesbeenseesaseenseesnsaenseanns 346
FIX (FUNCHION) 1eniiieiiieiie ettt et ettt et et e e ae e et e e bt e snbeenseeesbeenseesnseenseesaseenseanns 346
For Each ... Next (SLAtEMENL)eeviiiiiiiiieiieeie ettt ettt ettt et e ebe bt e snaeeseesaaeensea e 347
FOr ... NeXt (SLALEIMENL) ...ooiuiiiiiiiiieiieiie ettt ettt et ettt et e st e et e sabeeseesnseenseesnseenseanns 347
FOrmat (fUNCHOMN) ...oiiuiiiiieiie ettt ettt ettt e et e bt e st e et e esbeenseessbeenseesnseenseanns 348

Numeric formats of the Format functionc...coceoeriiiiiniiiinieceeeee e 348

Date/time formats of the Format functionc..cccceeiiviiiiiiiniiiiieeeeeee e 351

String formats of the Format functioncccccoecieiiiiiiiiniiiiiee e 353
FTEeFile (TUNCLION) ...eoiuiiiiieiiieiieeie ettt ettt et ettt et e st e et e sabeenseeenbeenseesnseenseanns 353
FUNCHON (STATEIMENT) 1...eieiiieiiieiieeiie ettt ettt et ettt et e et e e bt e sabe e teeesbeenseesnbeenseesnseenseanns 354
GEtODJECT (TUNCHION) ..tiiuiiiiiiiiiieeiieeiie ettt ettt e et et e e bt estte e bt e sseeenseessbeenseessseenseesnseenseanes 355
Gosub ... Return (StAtEMENL)c.eeoiiiiiiiiiieiiecie ettt ettt et e et saeebeessaeebeesaaeenneanes 355
GOLO (SLALEIMEIIL)viiiiieiieeiiieiie ettt ettt e et et e et e e teeesbeesateeabeessaeenseessseenseessseenseessseenseensseenseanns 356
HEX (FUNCLION) ..ttt ettt ettt et e st e et e e bt e snbe e teessbeenseesnseenseesnseenseanns 356
HOUE (FUNCEION) ...ttt ettt ettt e e e ste e et e e bt e sabe e seeesbeenseesnseenseesnseenseanns 357
If ... Then ... EIS€ (STAtEMENL)cccuiiieiiiiiiiiiieiieeiie ettt ettt eite et e st e eteesabeesbeeseaeenseesnaeenseanes 357
INPUL (FUNCHION) .eiiitiiiiiieiie ettt ettt ettt e bt e st e e bt e s aaeesbeesaeeenseessseenseassseenseessseanseanns 358
INPUBOX (FUNCLION) ..ttt ettt ettt e st e et e s abeesbeeseaeenbaesnneenseanes 358
INSEE (FUNCLION) ..ttt ettt ettt et e st e e bt esate e bt e saseenseessseenseessseenseesnseenseanns 359
INE (FUNCHION) .oiiiiiiieeiiietie ettt ettt ettt et e e bt esaeeeabeessteeabeessseenseessbeenseessseenseensseanseanes 360
ISDAte (FUNCHION) ..eiiiiiieiiieii ettt ettt ettt e et et e e bt estte e bt estbeeaseessbeesseassseenseesnseanseanns 360
ISEMPLY (FUNCHIOMN) .oiiiiiiiiiiiieiie ettt ettt ettt et e st e e bt esaaeeabeessbeenseessseensaesnsasnseanns 360
ISINULL (FUNCHION) ittt ettt ettt e et e et eebeessbeeaseessbeenseassseensaesnsaanseanes 361
ISNUMETIC (FUNCHION) ..tiiuiiiiiiiiiieeiieeiie ettt ettt ettt et e st e e bt e s b e ebeessbeenbeessseenseesnseenseanns 361
KL (SEALEIMENT) ...vivieiieeiieeiie ettt ettt ettt ettt e bt e st e et e e saeeeebeeseessbeenseesnbaenseesnseenseesnseenseanes 362
LBOoUNA (fUNCHOMN) ..tiiiiiiiieiieeieeciie ettt ettt et ettt e et e eebeesbeessbeeseessbeenseesnseenseesnseanseanns 362
LCASE (FUNCHIOMN) ..ivtieiiieiieeiie ettt ettt ettt ettt e et estte et e esbeeesbeebeesabeenseesnsaenseesnseenseesnseanseanns 363
Left (TUNCHIOMN) 1.uiiiiiiieiie ettt ettt et ettt et e et e e te e et e e bt e ssbeenteessbeenseesaseenseesnseenseanns 363
Lo (FUNCHION) 1ottt e bt e st e et e e bt e esbeesaeesabeenseeenseenseesnseenseesnseanseanes 364
Lt (STALEIMIENT) ...veevvieiieeiieeiie et et e ettt e et e ette et e et teeabeesteeeabeesseeenseeseessseenseesnsaenseesaseenseesnseenseanns 364
Line INput # (STATEMENT) ...eevuvieiiiiiieiieiie et ieete ettt et et e et et e e be e bt e sabe e seeenbeeseesnseenseesnseenseanns 365

Table of Contents

LOZ (FUNCLION) 1.ttt ettt et ettt e et e et e e bt e ssbeeseeenbeenseesnseenseesnseenseanns 365
M (FUNCLION) 1.ttt ettt ettt ettt et ettt et e et e esaeeesbeenbeessbeeseessbeenseasaseenseennseenseanns 366
MINULE (FUNCHIOMN) .utiiiiiiiieeiie ettt ettt ettt ettt e et estte et e e saeeeebeebeesnseenseesnbeenseasnseenseesnseenseanns 366
MEKDIE (SEALEIMIENE) ...eeuiiieiiieeiiieiieeiieeteeeiie et eeette et e it e ebeestteebeesseeenbeeseessseenseessseenseesnseenseesnseeseanns 367
MONth (FUNCEION) L..etiiiiiiiieiie ettt ettt et e e e et e et e e saeessbe e seeesbeenseesnseenseesnseenseans 367
MSZBOX (TUNCHIOMN) ..iiiiiiiiieiiieiieeiie ettt ettt et ettt et e et e e bt e eebeesbeessbeenseesnseenseesnseenseesnseenseanes 368
INAME (STALEINEIL) ..uvieiiieiieeiiieiie et eiee ettt et e e st e e teeeateesbeessaeenseesaseanseessseenseessseenseessseenseesnsens 370
INOW (FUNCLION) 1..etieiiieiiieiieeie ettt ettt ettt et e et e et esabe e bt e ssbeenseesabeanseassseenseessseenseessseenseennsean 370
OCE (FUNCLION) ..ttt ettt ettt e et e st e et e e te e e bt esaaeeabeessbeenbeensseenseesssaenseessseenseesnseanseanes 371
ON EITOT (STATEIMENT) ...veeuviieiiieiie ettt ettt ettt e et et e et e st e e bt esaae e bt esseeenseessseenseassseenseessseenseanes 371
OPEN (STALEIMEIIL) ..viieiiieiiieiieiie ettt ettt e et et e et e e st e e bt e s teeebeessaeeaseessseenseessseenseassseenseessseanseanes 373
Option Base (StAtEIMENL)c..ccuiiiiiieiiiieiieeie ettt ettt ettt e et stte e bt e st e ebeesabeesbeessseenseessseenseanes 375
Option EXPICIt (SLALEMENT) ...c.eiiiieiiiieiieiie ettt ettt ettt et ete et e s e e teesaaeesbeeseaeenseesaaeenseanes 375
Print (STALEIMENT) ...c.vieiiiieiieeiiieiieete ettt ettt ettt e bt e st e et e e bt e esbeesbeesabeeseessseenseesnseenseesnseenseanns 376
Print # (STAt@IMENT) ...cc.oeiiiiiiiiiiie et ettt et e et e et eeeteeeeteeeeaeeesasaeesaseeensseeesseeenseennns 376
REDIM (StALBIMEIIL) ...eviiiiiiiiieiieeiieeieeete ettt ettt et et e et e et eeebeesaeessbeeteesnseenseesnseenseesnseenseanns 377
REM (SLALEIMENIL) ...uviiiiiiiieiieetieete ettt ettt et et e et e et e e bt e sabe e teesnbeeseesaseenseesnseenseanns 378
RESUME (STALEMEIIL) ..oueiieiiiiiiieiieeie ettt ettt ettt e e e bt e st e e teesnbeeseesnseenseesnseenseanns 378
RIGIE (FUNCLION) ..eiiiiiiiieiieee ettt ettt ettt e et e bt e st e e teeesbeenseesnbeenseesnseenseanns 379
RMDIE (STALEIMENL) ...eeiiiiiieiiieiieeie ettt ettt ettt e bt et e st e e teessbeenseesnseeseesnseenseanes 379
RNA (FUNCLION) ..ttt ettt et ettt e et e bt e et e e teesnbeenseesnbeenseesnseenseanns 380
SECONA (FUNCHIOMN) L.ouviiiiiiiiiiieiieeie ettt ettt ettt e bt et e st e esaeeesbeeseeenseenseesnseenseeenseas 380
SEEK (STALEIMEIIL) ...eeviieitiiiiieeiieeie ettt ettt ettt e et et e et e e st e sabeenseeesbeeseesnseenseassseenseeenseas 380
Select Case (STALEMENL) ...c..eicuiiiiieiieeie et eeie ettt ettt e et e et e et e esseeeabeesseeesbeeseesnseenseesnseeseeenseas 381
SeNAKEYS (SLALEIMENL)eoouiiiiieiiiieiieeiie ettt ettt et et e et e et e sabeeaeeenbeebeeenseenseessseenseeensens 382

Special keys supported by the SendKeys commandcccooviiiiiiiniiiciienieeeeieeieee 383
SE (STALETIICIIT)vieiieeiiieeiieeieeeiie et et e et et e ebeestteebeesteeeebeeseeenbeeseesaseenseeesseenseesnseanseesnseenseesnsenn 384
SEN (FUNCLION) ..ttt ettt ettt e et e et e eabe e st e eabeesseeesbeeseeenseenseesnseenseesnseas 385
SREIL (FUNCHIOMN) ...ttt ettt et et e bt e st e e st e sabeenseeesbeenseesnseenseessseenseeensean 385
STN (FUNCHIOMN) ettt ettt et ettt e et e et e eabeeseesaseenseeeabeenseeenseenseessseeseennsean 386
SPACE (FUNCLION) ...iieiieiiieiieeiieeie ettt ettt ettt et et e et e e bt e s be e seeesbeenseeenbeeseesnseenseessseenseennsean 386
SAE (FUNCLION) ..tiiiiieiieetieeie ettt ettt et et e st e et e et eeeabeeseeeabeenseeesbeeseesnsaenseesnseenseennsean 387
N E Y8 (ol (5 F2 115 10153 113 RO SO P O SURPRRRRRP 387
STOP (STALEIMEIIL) ...eeiiieiiieiiie ettt ettt ettt et et e et et esabeeteesaseenseeesbeenseesnseenseesnseenseennsean 388
S (FUNCHION) .ttt ettt ettt et e et e bt e eabeeseesaseesseeenbeenseeenseenseessseenseennsenn 388
StrCOMP (FUNCLION) ..eiiiiiiiiieiieiie ettt ettt et st e et e st e eaeeesbeebeesnseenseesnseenseeenseas 389
SHANG (FUNCHION) ..eiiiiiieiiieie ettt ettt ettt ettt e et e st e st e esaeeesbeeseesnseenseessseenseeenseas 389
SUD (STALEIMENE) ...vieiiieiiieiie ettt ettt ettt et e et ette et e e ttesabeeseesaseesseeesseenseesnseenseesnseenseennsean 389
TN (FUNCHIOMN) 1.ttt ettt et et et e st e e bt esteeesbeessbeesbeessseenseessseenseassseenseensseanseanes 390
TIME (FUNCHION) .eiiitiiiiieiie ettt ettt et et e et e s teeebeessbe e bt essseenseessseenseessseenseesnseanseanes 391
TIMESErial (fUNCHIOMN) ..ieiuiiiiiiiieeiieiie ettt ettt et et e e bt e s b e ebeesabeesbeessneenseessseenseanes 391
TIMEV AU (FUNCLION) ..eoutiiiiiiiiieeiieiie ettt ettt ettt et e e bt e st e ebeesabeenbeessseenseesnaeenseanes 391
Trim, LTrim, RTrim (fUNCLION)ooouiiiiiiiiiiiieie ettt ettt es 392
TYPE (SEALEITIENL) ...vveiiieiieeiii ettt ettt e et et e et et e e bt esaeeeabeessbeenseessseenseessseenseessseenseensseenseanes 392
UBOUNA (FUNCEION) ittt ettt et e et e e bt e st e e teeesbeesseesnbeenseesnsaenseanns 394

Table of Contents

UCASE (FUNCLION) L..utiiiiieiieeiieetteete ettt et et e st e et e e bt e eebeesbeesnbeenseeesbeenseesaseenseesnseenseanns 394
VAl (FUNCHIOMN) 1ottt e e e st e et e e bt e esbeesaeessbeeseesnbeenseesaseenseesnseenseanes 394
VarTyPe (FUNCHIOMN) ..eouiiiiieiiiieiieeie ettt ettt et ettt e e sae e et e e bt e snbe e seeesseesseesnseenseesnseenseanns 395
Weekday (FUNCLION)oeiiiiiiieiieie ettt ettt e st e et esebe e bt e sabeeseesnseenseanes 396
While ... Wend (STAtEMENT)cccuieiiiiiiieiieiie ettt ettt ettt et e st e et e sbe e st e saseeseesnseeseees 396
WILh (STALEIMIENT) ..eevieiieeiieeiie ettt ettt ettt et e et e et e et e e bt e esbeenseeesbeenseesnseenseesnseenseanns 396
WIIE # (STALEIMEIIL) ..eeveiieiiieiiieiieeiie ettt ettt ettt e et e st e et e e bt e eebeesbeessbeeseeenseenseesnseenseesnseenseanns 397
Y QAT (TUNCHION) ..utiiiiieiiieiieeie ettt ettt e et e st e et e e bt e eebeebeesabeeseessbeenseesnseenseesnseenseanns 398
Appendix 399
Ribbon commands and corresponding menu commandsccceerieeiiienieeiiienieeeeenieeeieeieenns 399
COLOT COMSTANES ...ttt ettt et e at e sh et eat e s bt et e eatesbe e bt satesaeebeeatesbeebesatenaeen 403
Color constants for BGR COLOTScc.oeriiiiiiiiiiiierie ettt 403
Color constants for iINAEX COLOTScc.eeriiiiiiiiiieiierie ettt e enes 404
Command-liNe PATAMELELScccveeruieeiiieiieeiieeieeteeeteeteeseeenteessteeseessreeseessseeseessseenseessseenseaes 406

Index 408

Welcome!

Welcome!

Welcome to BasicMaker!

This manual describes how to use BasicMaker, a programming environment that allows you to control
TextMaker, PlanMaker and other VBA-compatible Windows programs using scripts.

BasicMaker is only available for Windows and is not included in all versions of SoftMaker Office.

Note: This manual was written in order to describe how to use the program via the new ribbon user
interface. A description of its use via classic menus with toolbars can only be found in older manuals.

Tip: A table in the appendix shows you which ribbon command corresponds to which menu command:
Ribbon commands and corresponding menu commands

The manual is divided into the following chapters:
* Welcome!
The chapter that you are currently reading. It contains information on the general use of BasicMaker.

= Using the script editor

In the second chapter, you learn everything about the operation of the script editor of BasicMaker, which
you use to build, execute and test your scripts.

= Language elements of SoftMaker Basic
Here you can find basic information about the syntax of SoftMaker Basic.

= BasicMaker and TextMaker

BasicMaker was primarily developed in order to be able to program TextMaker and PlanMaker. This
chapter contains all details about programming TextMaker via BasicMaker scripts.

= BasicMaker and PlanMaker

In this chapter you will find information about programming PlanMaker via BasicMaker scripts.

= Statements and functions from A to Z

This chapter covers descriptions of all statements and functions available in SoftMaker Basic.

Welcome!

What is BasicMaker?

BasicMaker is an easy to use development environment for the programming language SoftMaker Basic.

Note: BasicMaker is only available for Windows and is not included in all versions of SoftMaker Office.

What is SoftMaker Basic?
SoftMaker Basic is modeled after the industry standard Visual Basic for Applications (VBA) from Microsoft.

It is a rather easy to learn programming language that is optimized to work in tandem with applications. For
example, with some simple Basic statements, you can change fonts in a TextMaker document, open another
document, etc.

BasicMaker does not produce directly executable program files, as it does not contain a compiler that creates
executable files. Instead, you build so-called scripts with BasicMaker. These can be opened and executed from
within BasicMaker.

An overview of the language elements of SoftMaker Basic and its application can be found in the chapter
Language elements of SoftMaker Basic. For an A-Z reference of the Basic statements available, see the chapter
Statements and functions from A to Z.

What does BasicMaker consist of?
BasicMaker consists of the following components:

= The control center of BasicMaker is the script editor, for you to create and edit SoftMaker Basic scripts. For
information on how to operate the editor, refer to the chapter Using the script editor.

= Integrated into the editor is an interpreter for the programming language SoftMaker Basic. This interpreter
is responsible for the execution of the scripts. SoftMaker Basic scripts cannot be compiled to executable
programs, but have to be started from the script editor.

You can also execute a script from inside TextMaker or PlanMaker. In either of them, select the ribbon
command File | Scripts group | Run script and choose the script to run. BasicMaker will then execute the
script.

Further information about running scripts can be found in the section Starting scripts.

= Beyond that, a debugger for testing scripts is integrated in the script editor. With it, you can process a script
step by step and inspect variables. This helps to find errors. You can find more information about this in

Debugging scripts.

= Finally, BasicMaker contains a graphical dialog editor. You can use it to create dialog boxes which allow
users to interact with your scripts. For more information, see the section Using the dialog editor.

Using the script editor

Using the script editor

In this chapter, you will learn how to work with BasicMaker's script editor:

Starting BasicMaker

Commands on the File ribbon tab

Commands on the Home ribbon tab
Commands on the View ribbon tab
Commands on the Quick access toolbar
Starting scripts

Debugging scripts
Using the dialog editor

Changing the settings of the script editor

Exporting/importing settings

Starting BasicMaker

To start BasicMaker, do any of the following:

Starting BasicMaker from the Start menu

To start BasicMaker, use the Start menu (the icon with the Windows logo) in the lower left corner of the
screen. You will find your SoftMaker Office applications in a folder called SoftMaker Office.

BasicMaker's script editor will open. It can be used for creating and editing scripts as well as running
scripts. For details on each of its menu commands, see the sections that follow.

Starting BasicMaker from TextMaker or PlanMaker

You can also start BasicMaker from within TextMaker or PlanMaker. To do this, select the Edit script
command on the ribbon tab File | Scripts group in TextMaker or PlanMaker.

Running a script directly from within TextMaker or PlanMaker

To execute a script from TextMaker/PlanMaker, select the ribbon command File | Scripts group | Start
script in TextMaker or PlanMaker. A file dialog will appear. Select a script, confirm with OK and the script
will be executed.

Using the script editor

Commands on the File ribbon tab

With the commands on the File ribbon tab of the script editor, you can open, save, print and manage files.
Additionally, you can configure the editor here.

F R HYy @6 D a8

D Lm EJ] .

Mew Open Cloze Save Cave all Page Print Versions File Options Customize
v setup - manager -
File Document Print File management Settings

= File | New
Creates a new script.
= File | Open
Opens an existing script.

You can also open VBA scripts (VBA = Visual Basic for Applications), however, not all VBA commands
are supported by BasicMaker.

= File | Close

Closes the current window.

= File | Save
Saves the script in the current window.

= File | Save as

Saves the script in the current window under another name and/or in another folder.

= File | Save all

Saves the scripts in all open windows that have changed since the last time they were saved.
= File | Page setup

Lets you adjust the paper format and margins for printing.
= File | Print

Prints the script in the current window.

= File | Versions

Returns to a previous version of the currently open script. For more information, see section Changing the
settings of the script editor, "Backup tab".

Using the script editor

= File | File manager

Opens the file manager, which you can used to easily find, open, delete and print files. More information

about this can be found in Using the file manager.

= File | Options

Lets you control the settings of the editor. Read more about this in the section Changing the settings of the

script editor.

= File | Customize

Lets you customize the ribbons (or the toolbars) as well as the shortcut keys for the editor. For detailed
information, refer to the TextMaker manual — under the following keywords: "Customizing the ribbon" (or "
Customizing toolbars") and "Customizing shortcut keys".

Using the file manager

The file manager displays a list of documents from one or more folders and lets you open, delete and print any
document with a click of the mouse. Furthermore, you can search for files.

To start the file manager, choose the ribbon command File | File management group | File manager.

File manager

File name
ChuADocuments' SoftMaker SarmpleshAllFents.bas

Size

2042

Drate

O b4

CaADocuments\SoftMaker\Samplest Calendar.bas

ChuADocuments SoftMaker Sarmplest Combo.bas
ChuADocuments\SoftMaker SarmplesiDemo.bas
ChaADocuments\SoftMaker SamplesiDialog. bas
ChaADocuments\SoftMaker S5amplesiMiniMenu.bas
ChuADocuments SoftMaker 5armplesiPlanMaker.bas
ChASoftMalker Samplesh TextMakerMultiPrinter.bas

1097
1795
1228
1004
1492
4466

Erint...

Time
07.12.2007 15:53:28
19.02.2020 13:11:50
07.11.2007 22:40:10
14,12.2007 11:45:08
08.11.2007 0% 5444
07.11.2007 224302
07.12.2007 15: 5404
19.05.2008 17:00:18
Delete

To execute a command, select a file from the list and then click on one of the buttons.

The buttons in the file manager have the following functions:

Open
Clicking this button will open the selected file.

Eename...

Using the script editor

Close

Clicking this button will close the file manager.

Search

Click this button to search for a certain file or to choose the folder for the file manager to display.
A dialog box with the following functions appears:
= File name
Allows you to specify a unique filename or a filename pattern as the search target.
With the default setting * . bas, the search function will find all Basic scripts.
If you specify a unique filename like 1istfonts.bas, only files with exactly this name will be found.

If you specify a filename pattern like 1ist*.bas, all scripts whose filenames begin with "List" will be
found.

= File type
From this list, you can choose the type of the files to be targeted in the search.
= Folders
Here you can select the drive and folder in which the file manager is to carry out the search.

= Include subfolders

If this option is enabled, the file manager searches not only the selected folder, but also all folders below the
selected folder.

= "New list" button
Starts a new search with the current settings.

= "Add to list" button

Also starts a new search; however, any previous search results remain in the list rather than being cleared
from the list. The new search results will be added to the old ones.

= "Quick paths" button

Quick paths allow you to create shortcuts to the folders that you use most often, so that they can easily be
accessed in file dialogs. For details, see the TextMaker or PlanMaker manual, keyword "Quick paths".

Print
If you click this button, you can print the selected file.

Delete
If you click this button, the selected file will be deleted (after confirmation).

Using the script editor

If you click this button, the selected file will be renamed.

Commands on the Home ribbon tab

The following commands are available on the Home ribbon tab of the script editor:

(i —, b = i H
| Ij db Cut E Step Insert/Delete breakpoint 5 Dialog [Document O Search Search again I/_
— Eg Copy [Bookmark Syrnbol
Paste 7% Delete start Trace Reset ¢ Delete all breakpoints IA SmartText a+b Replace = Goto Select
¢ all
Edit Program Insert Search Selection
Command group "Edit"

The commands in this group are used for editing scripts.
= Paste

Pastes the content of the clipboard into the text at the current position.

= Cut
Cuts the selected text to the clipboard.

= Copy
Copies the selected text to the clipboard.

= Delete
Deletes the selected text.

Command group "Program"

You can execute the current script with the commands in the Program group of the Home ribbon tab of the
script editor:

= Start (shortcut key: F9)
Executes the script. See also the section Starting scripts.

The other options in the command group Program help with finding errors. So for example you can run the
script step by step or set breakpoints at which execution of the script will be automatically paused.

For this, the following commands are available:

= Trace (shortcut key: F7)

Carries out the next statement in the script, then stops.

Using the script editor

Step (shortcut key: F8)

This, too, invokes the next statement, provided however that procedures (functions and subs) are not
processed in single steps, but as a whole.

Reset (shortcut key: Ctrl+F2)
Breaks the execution and puts the script back to its first line.

Insert/Delete Breakpoint (shortcut key: F2)

Places or removes a breakpoint in the current line. The execution of scripts will be automatically interrupted
as soon as it reaches a breakpoint.

Delete all Breakpoints (shortcut key: Alt+F2)

Deletes all breakpoints in the script.

Detailed instructions about the above commands can be found in the section Debugging scripts.

Command group "Insert"

The following commands are available on the Home ribbon script Editor tab:

Dialog

Opens the graphical dialog editor, with which you can create and edit user-defined dialog boxes. For more
information, see the section Using the dialog editor.

Bookmark

Sets a bookmark at the current position. This can be visited again at any time with the ribbon command
Home | Go to. More on this can be found in the section Bookmarks and the Go to command.

SmartText

Allows you to insert and edit SmartText entries. For more information, see the section Using SmartText.

Tipp: Using SmartText entries for frequently used instructions or routines can save you a lot of time!

Document

Inserts another script or text document at the current position of the cursor. A file dialog appears where you
can choose the desired document.

Special characters

Opens a window containing all the different symbols and other special characters that you can insert in the
text. Select the desired character and click the Insert button.

Command group "Search"

The Find and Replace commands can be found in the Find tab:

Search

Lets you search for text. More information about this can be found in the section Searching and replacing in
the script editor.

Using the script editor

= Replace

Lets you search for text and replace it with some other text. More information about this can be found in the
section Searching and replacing in the script editor.

= Find next

Repeats the last search or replace command. More information about this can be found in the section
Searching and replacing in the script editor.

= Goto

Lets you set and navigate to bookmarks in the script. More on this can be found in the section Bookmarks
and the Go to command.

Command group "Select"

The Select all command selects the entire text.

Searching and replacing in the script editor

The ribbon commands Home | Search and Home | Replace allow you to search for a specific text in the script
or replace it with another text.

Search

With the ribbon command Home | Search, you can search for text. Type in the term you want to search and
click the Search button.

Options available in the Search dialog box:

Case-sensitive: If this option is checked, the case of the letters in the found text must be the same as the search
term. Thus, if you search for "Print", only "Print would be found and not "print" or "PRINT".

Whole words only: If checked, only those occurrences of the search term that are separate words (not just part
of a word) will be found.

Search from top: If checked, the search starts at the top of the script instead of the current position of the text
cursor.

Search Backwards: If checked, the search is conducted from the position of the text cursor backwards to the
top of the script, otherwise forwards.

Reset: Use this button to remove the search text entered in the dialog box.

Replace

With the ribbon command Home | Replace, you can search for text and replace it with different text. Enter the
search string and the replacement string.

Options: see above

Using the script editor

Start the search with the Search button. When the script editor finds the searched text, it scrolls to its position
in the document and selects it.

You can then do any of the following:

A. You can click on Replace to have the editor replace the selected occurrence of the search term with the
replacement term and jump to the next occurrence of the search term.

B. You can click on Search again to have the editor jump to the next occurrence of the search term — without
replacing the selected occurrence.

C. You can click on Replace all to have the editor replace the selected occurrence of the search term and all
subsequent occurrences it finds in the text.

D. You can click on Close to end the search and close the search dialog box.

Search again

With the ribbon command Home | Search again, you can repeat the last search or replacement action.

Bookmarks and the Go to... command

Exactly like in the word processor TextMaker, you can use bookmarks in the script editor, which helps to keep
track of certain points in the script.

To insert a bookmark, select the ribbon command Insert | Insert group | Bookmark at the desired position in
the text and give the bookmark a name.

After giving the bookmark a name, you can use the ribbon command Home | Search group | Go to to return to
the bookmarked position any time you wish.

Setting bookmarks
To set up a bookmark, do the following:

1. Move the cursor to the text position where you want to place the bookmark.
2. Select the ribbon command Home | Insert group | Bookmark.

3. Type in a name of your choosing for the bookmark. Its name may contain only letters, numbers and
underscores. Special characters are not allowed. The name must begin with a letter.

4. Click on OK to set the bookmark.

You can define an unlimited number of bookmarks.

Calling a bookmark
To return to a bookmarked position in the script, do the following:
1. Select the ribbon command Home | Search group | Go to.

2. Choose the desired bookmark from the list or type in its name.

Using the script editor

3. Click on OK.

The text cursor will now jump to the position where the bookmark was created.

Deleting bookmarks

When a bookmark is no longer needed, you can delete it using the following procedure:
1. Select the ribbon command Home | Insert group | Bookmark.

2. Select the bookmark you want to delete from the list, or enter its name manually.

3. Click on Delete.

Note: When you delete a passage of text containing a bookmark, the bookmark is deleted automatically.

Show bookmarks

Choose the ribbon command View | Bookmarks to enable or disable the display of bookmarks in the script
editor.

Sending the cursor to a specific line

The ribbon command Home | Search group | Go to allows you to move the cursor to a specific line of the
script. To do this, select the command and type in the line number.

Using SmartText

Exactly like in the word processor TextMaker, you can setup SmartText entries in BasicMaker’s script editor.
This feature can save you a lot of typing: You can define entries for frequently needed names or source code
fragments and then call them up quickly and easily.

For example, you could create a SmartText entry named "tma" containing "tm.Application. ActiveDocument".
Later, just type "tma" in the script and press the space bar or a punctuation character. Immediately, "tma" will
be replaced with "tm.Application.ActiveDocument".

This can save you lot of time otherwise spent on typing.

Creating SmartText entries

To create, for example, a SmartText entry with the name "tma" containing "tm.Application.ActiveDocument",
proceed as follows:

1. Select the ribbon command Home | Insert group | SmartText.

2. Click on the New button to create a new SmartText entry.

3. Give the SmartText entry a name ("tma" in our example). Then click on OK.
4

. Type in the text for the SmartText entry in the large input field ("tm.Application.ActiveDocument" in our
example). Click on Save.

5. Leave the dialog box by clicking Close.

Using the script editor

The SmartText entry has now been created. Later, the SmartText entry can be called up by using the specified
name.

Inserting SmartText entries

Calling out SmartText entries is simple: In the script, type in the name of the SmartText entry ("tma" in our
example) and then press the space bar, the Enter key or a punctuation character. Immediately, "tma" will be
replaced by the content of the SmartText entry, in our example "tm.Application.ActiveDocument".

Note: If this does not work, you have disabled the option Expand SmartText entries. Select the ribbon
command File | Options, switch to the General tab and activate this option again.

Alternatively, you can insert the element using a dialog box with the ribbon command Home | SmartText,
selecting the desired element and then clicking the Insert button.

Editing SmartText entries

With the ribbon command Home | Insert group | SmartText you can edit the already created text modules
later:

= Creating a new SmartText entry

To create a new SmartText entry, click the New button (see above).

= Deleting an entry

To delete a text module, select it from the Text modules list and click the Deletebutton.

= Renaming an entry

To change the name of an entry, select it from the list, click on Rename and enter a new name.

= Editing an entry
To edit an entry, select it from the list and then click in the large input field. Now you can modify the
content of the SmartText entry.

= Inserting an entry

To insert a SmartText entry into the script, select it from the list and click on the Insert button.

= Close dialog box

You can close the dialog box with the Close button.

Commands on the View ribbon tab

Use the commands on the View ribbon tab of the script editor to customize the screen display:

Using the script editor

m B H

Bookmarks Watch Windows

-

View Window

* View | Bookmarks

Allows you to choose whether Bookmarks are visible in the script.

= View | Variable window

Opens the variable window. It can be used to monitor the contents of variables during the execution of the
script. For more information, see the section Watching variables.

* View | Windows
The Close all command closes all open windows.

All open windows are listed in the window list below. If you click on an entry, the corresponding window
comes to the foreground.

Commands on the Quick access toolbar

The Quick access toolbar is displayed directly below the ribbon. It provides a selection of the most frequently
used commands.

e~ "JH9 7

* Touch mode
If you enable this button, all symbols in the ribbon will be slightly larger. This is useful when operating the
software with your finger (for example, on a tablet).

= Opening files

Opens an existing script, see Commands on the File ribbon tab.

= Save file

Saves the script in the current window, see Commands on the File ribbon tab.

= Undo

Undoes the last text change in the current script window. You can execute this command several times, in
order to undo the last x changes.

= Redo

Restores the effect of your most recently Undo operations. This command can also be executed repeatedly.

Using the script editor

To the right of the quick access bar, there isa # double arrow. With this button you can enable/disable and
configure the symbols of the script editor or change the position of the quick access bar. For detailed
information, refer to the TextMaker manual, keyword "Quick access toolbar".

To the left of the Quick access toolbar, you will find the "hamburger-menu" = . Even if you have selected
the "ribbon" as the user interface (see Changing the settings of the script editor), the "hamburger menu" is still
available in the Quick access toolbar in case you would like to access the menu commands of the classic menu
interface.

Changing the settings of the script editor

Use the ribbon command File | Options to configure the settings of the script editor.

The available settings are distributed across several dialog-box tabs:

View tab
Use this tab to change settings related to the appearance of the program:

= Typeface and Size
Lets you choose the font face and size to be used in the editor. It is recommended to choose a non
proportional font like "Courier New".

= Tabs
Lets you adjust the width of tabs (in characters). This determines by how many characters the text is
indented when the tab key is pressed.

= Show bookmarks

Normally, bookmarks are not visible in the script. However, if you enable this option, bookmarks will be
displayed. For information about using bookmarks, see the Bookmarks section and the Go to command.

General tab
Use this tab to change general settings:

* Maximum number of undo steps

Lets you specify the number of actions that can be reversed with the Undo command.

= Expand SmartText entries

When this option is enabled, SmartText entries can be expanded directly in the text. All you have to do is
type the abbreviation for the SmartText entry and then press the space bar, Enter key or a punctuation
character (see Using SmartText).

If this option is deactivated, SmartText elements can only be inserted via the ribbon command Home |
Insert group | SmartText.

Using the script editor

Appearance tab
Use this tab to customize the user interface of BasicMaker:
= Dialog language

Here you can select the language to be used for the user interface (menus, dialog boxes, etc).

= "User interface' button

When you click on the User interface button, a dialog box appears in which you can select the type of user
interface that the applications in SoftMaker Office should use:

Ribbon (upper row): If you select one of the styles from the top row, the programs use a "ribbon" as the
user interface. The only difference between the individual styles is in the color scheme used.

Classic menus with toolbars (lower row): When you select one of the entries from the bottom row, the
programs will use classic menus with toolbars. You can also choose between different color schemes
here.

In addition, the following settings can be made in the dialog box:

Quick access toolbar (only in the ribbon interface): Determines where the Quick access toolbar, which
contains icons for some of the most frequently used commands, should be displayed: to the left of the
document tabs — or in a separate toolbar directly below the ribbon.

Touch mode: If you enable this option, all icons in the ribbon user interface or classic menu interface
will be slightly enlarged. This is useful when using 4k monitors.

Tip: Alternatively, you can also enable/disable touch mode with the following commands:

Ribbon user interface: Here, you choose the command Touch mode ® in the Quick access toolbar.

Classic menu interface: Here, you choose the command View > Touch mode.

= Prefer using larger controls
This option is important when using 4k monitors. If the program's icons appear too small on your screen
(caused by a higher monitor scaling), enabling this option will enlarge the icons appropriately.

= Show full path in title bar
Enable this option if you want the title bar to display not only the name of the document but also its file
path.

= Show status bar in ribbon mode
This applies only to the ribbon interface: You can enable/disable the display of the status bar here.
Tip: In the classic menu interface, select the menu command View > Toolbars and set/remove the
checkmark in front of "Status bar".

= Show fonts in font list

When this option is enabled, the program renders the names of fonts that appear in font lists (e.g. in the
settings dialog) using their corresponding fonts. This lets you see the actual appearance of each font at a
glance.

Using the script editor

= Show tooltips
This option lets you specify whether or not tooltips should be displayed. These are short info texts that are
displayed next to the mouse pointer when you point the mouse at a screen element.

= Beep on errors

If this option is enabled, BasicMaker emits a beep for error or warning messages.

= Use system file dialogs

This option controls the type of dialog boxes that appear when commands to open and save files are issued.
If it is disabled, then BasicMaker's own file dialog will be displayed. If it is enabled, then the standard file
dialog provided by your operating system will be displayed.

= Smooth edges of screen fonts

If this option is enabled, BasicMaker uses a technology called "anti-aliasing" to smooth the edges of fonts
and improve their appearance on the screen.

* Workspace color

This option allows you to change the background color of document windows.

"Files" tab
Use this tab to change options regarding the opening of files.
= Recently used files in File menu

BasicMaker displays a list of the files most recently opened in it in the File menu. If you select one of these
entries, the corresponding file will be opened immediately. Here, you can specify the number of files to be
displayed in the list.

"Backup" tab
Use this tab to change options regarding the manual and automatic saving of files:

* When you save a file manually

Keep older versions of the document: Several generations of file backups are created for each script
when you save a script manually. All of these copies are stored in a special Backup folder.

Tip: If this option is enabled, the command File | Versions o (in the group File management) is also
available, which allows you to easily return to a previous file version of the currently open script.

Number of versions to keep: Here, you specify the maximum number of versions of backups
(generations) to be kept per script.

= Automatically created file versions (snapshots)

Save unsaved changes every ... Minutes: If you want automatic "snapshots" to be created as an
additional backup while the document is being edited, enable the checkbox here. In the dropdown field to
the right, you specify the interval at which the snapshots are to be taken regularly.

Number of snapshots to keep: In this dropdown field, you specify the maximum number of snapshots
you want to keep.

Using the script editor

= Folder for file versions

Here, you can change the path for the Backup folder in which all backups are stored.

= "Cleanup" button: This button provides two options for deleting file backups:

Delete orphaned file versions removes all BasicMaker backups for which the corresponding original
document no longer exists.

Delete file versions of all documents removes al/ BasicMaker backups.

If the saving of backup copies has been activated, you can open the version manager with the File | Versions
command. All available backups of the currently open script are clearly listed here and you can return to a
previous file version.

More detailed information on the usage of backup copies can be found in the TextMaker manual, keyword
"Backup copies".

"Manage" button

In the dialog box of the ribbon command File | Options, you will find the Manage button on each tab. You can
use it to save the settings of the program and, for example, transfer them to a new version.

For more information, see the following pages.

Exporting/importing settings

You can save your individual settings that you have configured in the SoftMaker Office applications. In the first
step, export the settings data — for example, before you install a new version. Then, in the second step, import
this data into the newly installed version.

For both steps, use the Manage button in the dialog box of the command File | Options "=,

For information on which settings you can export/import exactly, see below.

Note: Export and import of settings data is only possible as of version 2021.

What reasons could there be to export/import settings?
The following reasons could be considered for exporting/importing your settings:

= You want to apply the settings of the old version to a new version of SoftMaker Office that you are
installing on the same computer.

= You have also installed the current version of SoftMaker Office on another computer and want to use the
same settings there.

Using the script editor

* You want to apply the settings of an old version of SoftMaker Office to another computer on which you
have installed the new version of SoftMaker Office.

Which files are backed up?

For the export, BasicMaker accesses the settings files (...config.ini, ...tools.dat, etc.) that are stored on your
device in the SoftMaker\Settings folder.

Note: This information is for illustrative purposes only and you usually do not need to do anything here.
BasicMaker will automatically replace these files for you if you perform the steps described below for
exporting/importing the settings.

Step 1: Export the settings

To export settings, choose the command File | Options =", and the "Options" dialog box will open. Here, click
on the Manage button located at the bottom left of each tab of this dialog box.

This will open another dialog box "Manage settings for Office". Here, select which settings you want to save
from the following options:

Tip: You can also just export all of them, but you will have to ensure when subsequently importing that you
only select the options you really want.

= Configuration files
This option saves all the settings you have made in the dialog box of the command File | Options. Some of
these settings are also located directly on the ribbon tabs (or in the toolbars).

= Customized ribbon/toolbars

If you have changed the arrangement on the ribbon, in the Quick access toolbar or in toolbars, you can save
your individual arrangement with this option.

Please note for the import of the settings from an old to a new version of SoftMaker Office: If this option is enabled, command
icons that have been newly added in the more recent version will not be displayed there. Thus, if you would prefer the new icons to
be displayed instead of keeping your old arrangement, you should disable this option. Alternatively, you can import your old
arrangement anyway and look for the new symbols relevant to you afterwards using the command File | Customize.

= Keyboard shortcuts
This option allows you to apply shortcut keys that you have assigned yourself.

= User dictionaries

This option allows you to save the words that you have added to your user dictionaries (see TextMaker,
PlanMaker, Presentations).

= Other (SmartText, Labels, ...)
Enable this option if you want to apply all other settings that can be saved in SoftMaker Office.

When you finally click on the Export button, a zip file will be created with the options selected above. Save
this file to any location that you can easily access for subsequent import.

Using the script editor

Note: The settings of all SoftMaker Office applications are exported (TextMaker, PlanMaker, Presentations,
BasicMaker). The same applies to the import in the following step.

Step 2: Import the settings

To transfer the settings to another installation of the program, choose the command File | Options there. In the
dialog box "Options", click on the Manage button.

In the following dialog box "Manage settings for Office", insert a check mark in front of the settings you want
to import. (Details of the options are described above in step 1.)

Now click on the Import button, and select the zip file that you created in step 1. The imported settings will
take effect in the current BasicMaker application when you restart the program.

"Reset" button

The Reset button resets all program settings back to their delivery state.

Note: This action resets the settings for all SoftMaker Office applications (TextMaker, PlanMaker,
Presentations, BasicMaker) of this version.

Using the script editor

Starting scripts

Basic scripts can be started from BasicMaker, TextMaker or PlanMaker:

= Starting from BasicMaker
To execute a script, select the ribbon command Home | Program group | Start in BasicMaker or press the
F9 key.

= Starting from TextMaker or PlanMaker
You can also start a script from TextMaker or PlanMaker. To do this, select the ribbon command File |
Scripts group | Start script in TextMaker or PlanMaker. A file dialog will appear. Select a script, confirm
with OK and the script will be executed.

= Starting from the command line

Alternatively, scripts can be started from the command line by entering BasicMaker /s scriptname.bas.
BasicMaker will start, run the specified script and then close.

Aborting a script

You can abort running scripts by pressing the key combination Ctrl+Break. (If another application is in the
foreground at this moment, switch to the BasicMaker application window first.)

Debugging scripts
The script editor offers commands that help you find and fix errors ("debugging"):

= Running a script step by step

= Using breakpoints

= Watching variables

Running a script step by step

The following commands enable you to run a script step by step:

Trace (shortcut key: F7)

When you select the ribbon command Home | Program group | Trace, only a single line of the script runs and
execution halts. If you select this command again, the next line will run, then execution halts again, etc.

This allows you to execute a script line by line in single steps.

Using the script editor

Procedure step (shortcut key: F8)

The ribbon command Home | Program group | Step also executes only one line of the script and then stops
execution.

The difference between this and the Trace command: Procedures are not processed line by line, but as a whole.

Explanation: If you invoke a procedure (a function or a sub) in your code, then Trace will go into this
procedure, run the first statement and then wait. Step will treat the whole procedure as a single statement and
process it as a whole before pausing.

Reset (shortcut key: Ctrl+F2)

The ribbon command Home | Program group | Reset aborts the single-step execution and resets the script to
the first line.

Using breakpoints

If you place a breakpoint in a line of your script and then run the script, execution will stop at this line.

To resume the execution afterwards, you can select the ribbon command Home | Program group | Start, or
alternatively Home | Trace or Home | Step.

The following commands are available for breakpoints:

Insert/Delete Breakpoint (shortcut key: F2)

The ribbon command Home | Program group | Set/delete breakpoint sets or removes a breakpoint in the
current line.

Delete all breakpoints (shortcut key: Alt+F2)

The ribbon command Home | Program group | Delete all breakpoints deletes all set breakpoints.

Watching variables

Use the Watch window to view the content of variables during the execution of a script. This is especially
useful when running a script step by step.

In order to monitor a variable, do the following:

1. If the watch window is currently not visible, activate it by using the ribbon command View | Watch.

Using the script editor

2. In the script, click on the name of the variable that you want to monitor. Then right-click to open the context
menu and choose the command Show variable. You can also simply type in the name of the variable in an
empty row of the watch window.

3. Now start the script with the ribbon command Home | Program group | Start, or alternatively with Home |
Trace or Home | Step.

The content of the variable will be shown in the watch window and be constantly updated.

Using the dialog editor

Use the ribbon command Home | group Insert | Dialog to open the graphical dialog editor, which you can use
to design user-defined dialog windows.

This section explains how to use the dialog editor included in BasicMaker:

= General information

= Opening/closing the dialog editor

= Commands in the File menu of the dialog editor

= Commands in the Edit menu of the dialog editor

= Commands in the Insert menu of the dialog editor

General information

In SoftMaker Basic, you can build dialog boxes in order to allow your scripts to interact with the user.

To create a dialog box, you must define a dialog. The dialog definition can either be entered manually in the
script (see the section Dialog definition) or you can use the dialog editor for this (see next section).

The dialog editor provides a graphical user interface for creating dialogs. You can insert dialogs controls using
the toolbar or the commands in the Insert menu of the dialog editor. Existing elements can be moved and
resized just like with a drawing program and their properties can be changed through the Edit menu.

Read more about it on the following pages.

Opening/closing the dialog editor

The dialog editor can be opened with the ribbon command Home | Insert group | Dialog.

Proceed as follows:

Using the script editor

Creating a new dialog
To create a new dialog box with help from the dialog editor, the following steps are necessary:

1. In the source code, place the text cursor at the position where the dialog definition should go (BeginDialog
... EndDialog).

2. Select the ribbon command Home | Insert group | Dialog.
3. Click on the New button.

4. The dialog editor will start and you can now design the dialog. (Information about using the dialog editor
can be found in the sections that follow).

5. When the dialog is completed, close the dialog editor with the menu command File > Exit.
6. Leave the dialog box by clicking Close.

The dialog definition is now inserted into the source code.

Editing an existing dialog

To edit an existing dialog definition, proceed as follows:

1. Select the ribbon command Home | Insert group | Dialog.

2. Choose the dialog that you want to edit from the Dialog name list.

3. Click on the Edit button.

4. The dialog editor will be started and you can edit the dialog.

5. When all changes have been made, end the dialog editor with the menu command File > Exit.
6. Close the dialog box with Close.

The dialog definition is changed accordingly in the source code.

Deleting an existing dialog

To delete a dialog definition, remove it manually from the source code or select the ribbon command Home |
Insert group | Dialog, select the desired dialog from the Dialog name list and click the Delete button.

Commands in the File menu of the dialog editor

The commands in the File menu of the dialog editor have the following functions:
= File > Reset dialog

Resets all changes made to the dialog that you are currently editing.

Using the script editor

File > Abort
Exits the dialog editor — without storing your changes.
File > Exit

Stores your changes and exits from the dialog editor.

Commands in the Edit menu of the dialog editor

The Edit menu of the dialog editor provides menu commands for editing dialog elements.

For many of these commands you first have to select the dialog element that you want to change. To select an
object, click on it. To select multiple objects, click on them successively while holding down the Shift key or
draw a rectangle around them with the mouse.

Edit > Cut
Cuts out dialog elements and puts them into the clipboard.
Edit > Copy
Copies dialog elements into the clipboard.
Edit > Paste
Pastes the content of the clipboard.
Edit > Delete
Deletes dialog elements.
Edit > Delete all
Empties the whole dialog box.
Edit > Snap to grid
Aligns dialog elements on a grid. The grid size can be adjusted with the menu command Edit > Grid.
Edit > Bring to front
If you have overlapping dialog elements, this command brings the selected element to the foreground.
Edit > Send to back
If you have overlapping dialog elements, this command send the selected element to the background.
Edit > Alignment
Changes the alignment of the currently selected dialog elements. Options available:
No change: No change is made.
Left: Aligns the elements to the left border of the leftmost element.

Center: Aligns the elements to their horizontal center.

Using the script editor

Right: Aligns the elements to the right border of the rightmost element.

Space evenly: Spaces the elements evenly between the left border of the leftmost and the right border of
the rightmost element.

Centered in window: Centers the elements within the dialog box.
The settings in the Vertical section work accordingly.
= Edit > Size
Changes the size of the currently selected dialog elements. Options available:
No change: No change is made.
Minimum width: The width is adapted to that of the narrowest selected item.
Maximum width: The width is adapted to that of the widest selected item.
Value: The width is set to a fixed value (entered in screen pixels).
The settings in the Height column work accordingly.
= Edit > Grid

Here you can configure the grid. The grid is a positioning aid for dialog elements. When it is enabled,
elements cannot be shifted to arbitrary positions; instead they snap from one grid point to the next. Options
available:

Show grid: Determines if grid points should be displayed (in the dialog editor).
Snap to grid: Determines if the grid is activate.
X and Y increment: Determines the distance of the grid points.

Tip: To fit elements on the grid that have already been inserted, use the Edit > Snap to Grid menu
command.

Commands in the Insert menu of the dialog editor

With the menu commands in the Insert menu of the dialog editor, you can add new elements to a dialog box.

Alternatively, you can use the following tools on the toolbar, or the keys F2 to F10:

Dialog element Icon Key
OK button] 4 F2
Cancel button Cancel F3
Button = F4

Using the script editor

Radio button (* F5
Check box i F6
Text A F7
Input box F8
Group box [_—l F9
List box F10
Combo box ==

Drop-down list

First, choose which kind of dialog element you want to insert. Then, in the dialog box drag a frame with the
desired size and position.

Detailed information on each dialog element can be found in the section Controls of a dialog box.

Using the script editor

Language elements of SoftMaker Basic

Language elements of SoftMaker Basic

In this section you will find basic information about the commands that can be used in BasicMaker scripts:

= Syntax fundamentals

= Data types

= Variables

= Arrays

= Operators

= Flow control

= Subroutines and functions

= (Calling functions in DLLs

= File operations

= Dialog boxes
= OLE Automation

Syntax fundamentals

Comments

Text that is preceded by the keyword Rem or an apostrophe (') will be seen as a comment and not executed.
You can use comments to annotate your scripts.

' This is a comment

rem This too

REM This too
Rem This too

As you can see, the Rem statement is not case-sensitive. This is the same with all keywords in SoftMaker
Basic.

Comments can also be placed at the end of a line:
MsgBox Msg ' Display message

The text after the apostrophe is a comment.

Language elements of SoftMaker Basic

Multiple statements in a line

You can place several statements on the same line, separating them by colons:

X.AddPoint (25,100) : Y.AddPoint(0,75)

... 1s identical to ...

X.AddPoint (25,100)
Y.AddPoint (0, 75)

Statements spanning several lines

You can make a statement span several lines by ending each line except the last with a space and an underscore

Q).

Print
"Hello!"

... 1s identical to ...

Print "Hello!"

Numbers
You can write numbers in three different ways: decimal, octal and hexadecimal:
= Decimal numbers: Most of the examples in this manual employ decimal numbers (base 10).

= Qctal numbers: If you would like to use octal numbers (base 8), place &O in front of the number — for
example &037.

* Hexadecimal numbers: For hexadecimal numbers (base 16), use the prefix &H — for example &HI1F.

Names

Variables, constants, subroutines and functions are addressed by their names. The following naming
conventions apply:

= Only the letters A-Z and a-z, underscores () and the digits 0-9 are allowed.
= Names are not case-sensitive.

= The first letter of a name must always be a letter.

= The length may not exceed 40 characters.

= Keywords of SoftMaker Basic may not be used.

Language elements of SoftMaker Basic

Data types

The following data types are available:

Type Suffix Syntax of the declaration Size

String $ Dim <Name> As String 0 to 65,500 characters
String*n Dim <Name> As String*n exactly n characters
Integer % Dim <Name> As Integer 2 bytes

Long & Dim <Name> As Long 4 bytes

Single ! Dim <Name> As Single 4 bytes

Double # Dim <Name> As Double 8 bytes

Boolean Dim <Name> As Boolean 2 bytes

Variant Dim <Name> As Variant depends on content

Or simply: Dim <Name>

Object (see the section OLE Automation)

User-defined (see the section User-defined data types)

Information on using variables can be found in the section Variables.

Special behavior of the Variant data type

In SoftMaker Basic, a variable does not necessarily have to be declared before it is used for the first time
(exception: if the Explicit option is set). SoftMaker Basic then automatically declares it on its first occurrence -
as variant data type.

The Variant data type can be used to store either numbers or character strings or date/time values. Type
conversion is performed automatically whenever needed.

You can also explicitly declare variables to be of the variant type, for example with pim x As variant or
simply with Dim x.

An example for the use of variant variables:
Sub Main

Dim x ' Variant variable
x = 10

Language elements of SoftMaker Basic

Xx =x + 8

x = "F" & x

Print x ' Result: "F18"
End Sub

When numbers are stored in a variant variable, SoftMaker Basic automatically chooses the most compact data
type possible. As a result, numbers will be represented as one of the following (in this order): Integer, Long,
Single, Double.

The data type used by a variant variable can change at any time. You can use the VarType function to
determine the current data type. You can use the ***[sNumeric function to check whether the variable currently
contains a numeric value.

Variant variables can take two special values which are not available in other data types:

= Empty is the value of a variant variable that has not yet been initialized. It can be queried with the IsEmpty
function. In numeric operations, Empty is interpreted as 0, in string operations as an empty string.

= The value Null serves to signal the fact that no (valid) value is available. It can be queried with the function
IsNull. Each operation with a Null value results in Null.

Concatenating Variant variables
If you use the + operator on a text string and a number, the result will be a text string.

If you use the + operator on two numbers, the result will be a number. If you wish to receive a text string
instead, use the & operator in place of +. This operator will always return a text string, independent of the data

type.

User-defined data types

You can use the Type statement to define your own data types. This must be done before declaring procedures -
user-defined data types are always globally valid. The user-defined variables can be declared locally or
globally.

Note: The use of arrays in user-defined types is not allowed. Furthermore, user-defined variable types cannot
be passed to DLLs that expect C structures.

Type Person
LastName As String
FirstName As String

Gender As String*1l ' ("m" or "f")
Birthday As String
End Type

Variables of this type can be created like other variables with Dim or Static. The individual elements can be
accessed with the point notation Variable.element (see also With statement).

Dim p As Person
p.LastName = "Smith"

Language elements of SoftMaker Basic

Variables

Declaring variables

Variables are created with the statements Dim or Static. By default, variables have the type Variant. If a
different data type is desired, you must specify it in the declaration with As Type or with a type suffix (e.g. %
for Integer) (see the section Data Types).

Declare X as a variant variable:
Dim X

Declare X as an integer variable:
Dim X As Integer

Same as the statement above:
Dim X%

' Multiple declarations in a line:
Dim X%, Name$

Scope of variables
Variables can be either local or global:
= Global variables are created with a Dim statement outside of a procedure. They can be accessed anywhere.

= Local variables are created with a Dim or Static statement within a procedure (subroutine or function). They
are only available within the procedure.

Arrays

SoftMaker Basic supports one- and multi-dimensional arrays. In arrays, series of values can be stored under a
uniform name. Each value in the array can be accessed by an index.

All elements of an array have the same data type. The following data types are allowed: Integer, Long, Single,
Double or String.

Note: In some Basic variants, arrays can be used without previous declaration. In SoftMaker Basic, this is not
allowed. Arrays must be declared before their first use, using either Dim or Static.

To set the size of an array, you indicate the upper limit and optionally the lower limit for the index. Only fixed
values are allowed, variables are not acceptable.

If the lower limit is omitted, the value defined by Option Base is taken — by default, this is 0.

Dim a(10) As Integer ''a(0)..a(10)
Dim b(-10 To 10) As Double ' b(-10)..b(10)

Language elements of SoftMaker Basic

You can use loops to efficiently access the elements of arrays. For example, the following For loop initializes
all elements of the array "A" with 1:

Static A (1 To 20) As Integer
Dim i As Integer

For i = 1 To 20
A(i) =1
Next i

Multi-dimensional arrays

Arrays can also have multiple dimensions, for example:

Static a (10, 10) As Double ' two-dimensional
Dim b (5, 3, 2) ' three-dimensional
Operators

SoftMaker Basic supports the following operators:

Arithmetic operators
Operator Function Example
+ Addition x=a+b
- Subtraction Xx=a-b
also: Negation X=-a
* Multiplication x=a*3
/ Division x=al/b
Mod Modulo x =a Mod b%
A Exponentiation x=a”"b
String operators
Operator Function Example
+ Concatenation x ="Good " + "Day"
& Concatenation x ="Good " & "Day"

Language elements of SoftMaker Basic

The difference between the operators + and & is in the handling of variant variables that contain numbers: the +
operator adds these numbers, whereas the & operator concatenates them as strings (see example).

Example:
Sub Main
Dim a, b as Variant ' 2 variant variables
a =2
b =3
Print a + b ' Return the number 5
Print a & b ' Returns the string "23"
End Sub
Comparison operators
Operator Function Example
< Less than Ifx <y Then ...
<= Less than or equal to Ifx <=y Then ...
= Equal to Ifx=y Then ...
>= Greater than or equal to Ifx>=y Then ...
> Greater than Ifx>y Then ...
<> Not equal to Ifx <>y Then ...

The result of comparisons with these operators is an Integer value:
= -1 (True) if the condition applies

= ((False) if the condition does not apply

Logical and bitwise operators

Operator Function Example

Not Logical negation If Not (x =a) Then ...

And Logical And If (x > a) And (x <b) Then ...
Or Logical Or If(x=y)Or (x=1z) Then ...

These operators work bitwise. This means that you can use them for logic testing as well as for bitwise
operations.

Precedence of operators
Operators are processed in the following order:

Operator Function Precedence

Language elements of SoftMaker Basic

0) Parentheses highest
A Exponentiation

+ - Positive/negative sign

/* Division/multiplication

+ - Addition/subtraction

Mod Modulo

=<>><<=>= Comparison operators

Not Logical negation

And Logical And

Or Logical Or lowest
Flow control

SoftMaker Basic provides a number of statements that control the program flow in scripts. For example, there
are statements that perform, skip or repeat statements depending on a condition. There are the following
variations:

Goto branches

Goto Labell

Labell:

The Goto statement performs an unconditional jump the specified label — in the above example to the label
"Labell".

Gosub branches

Gosub Labell

Labell:
Statement (s) ...
Return

A jump target must also be specified for the Gosub statement. The difference to the Goto statementis that the
Gosub statement returns to the original program position as soon as it encounters a Return statement.

Language elements of SoftMaker Basic

Do loops

With a Do Loop loop, a group of statements can be executed multiple times. There are the following variations:

Do While | Until Condition
Statement (s) ...
[Exit Do]
Statement (s) ...

Loop

Or:

Do
Statement (s) ...
Loop While | Until Condition

The difference:

Do While and Do Until check the condition before beginning to execute the statements inside the loop. These
will be executed only if the condition is true.

With Do ... Loop While and Do ... Loop Until, the condition is checked after the loop has been executed for
the first time. This means that the statements inside the loop are carried out at least once.

While loops

While ... Wend loops are identical to Do While ... Loop loops. The condition is also checked before the first
execution of the statements inside the loop.

While Condition
Statement (s) ...
Wend

For ... Next loops

A For Next loop repeats the statements it contains exactly # times using a counter. Each time the loop is run,
this counter is incremented or decremented by the specified value. If you do not specify an increment, 1 is used
as the increment.

For counter = StartValue To EndValue [Step Increment]
Statement (s) ...
Next

If branches

In an If Then block, statements are only executed if the specified condition is true. This condition must be an
expression whose result is True or False (for example If a<b Then).

An If ... Then block can contain one or more lines. If it extends over multiple lines, it must be ended with an
End If statement.

If Condition Then statement(s)... ' One-line syntax

Or:

Language elements of SoftMaker Basic

If Condition Then ' Multiple-line syntax
Statement (s) ...
End If

A variation of this are If ... Then ... Else statements. Here, the statements after Else are executed if the
condition is noft true.

If Condition Then
Statement (s) ...
Else
Statement (s) ...
End If

Further branches can be achieved by chaining multiple If ... Then ... Elself statements together. However, this
may lead to code that is hard to understand and it is therefore recommended to use the Select Case statement
instead (see below).

If Condition Then
Statement (s) ...
ElseIf Condition Then
Statement (s) ...
Else
Statement (s) ...
End If

Select Case branches

In a Select Case statement, a variable is checked against multiple values.

Select Case Variable
Case Valuel
Statement (s) ...
Case Value?2
Statement (s) ...
Case Value3
Statement (s) ...
[Case Else
Statements(s)...]
End Select

If the variable contains, for example, the value "Valuel", the statements after Case Valuel will be executed. If
it has none of the specified values, the code will jump to the statements after Case Else (if given; otherwise the
structure will simply be exited from).

Subroutines and functions

You can define your own functions and subroutines and use them like the built-in functions and statements that
SoftMaker Basic already has. Furthermore, it is possible to call functions that reside in DLLs.

= User-defined subroutines can be defined with the Sub statement.

= User-defined functions can be defined with the Function statement.

Language elements of SoftMaker Basic

= Functions in DLLs can be declared with the Declare statement (see the section Calling functions in DLLs).

Notes on naming subroutines and functions

Names for subroutines and functions may contain the letters A-Z and a-z, underscores (_) and the digits 0-9.
The name must begin with a letter. The length of a name may not exceed 40 characters. It may not consist of a
SoftMaker Basic keyword.

Passing parameters via ByRef or ByVal

Parameters can be passed to procedures either by reference (ByRef) or by value (ByVal):
= ByRef

The ByRef ("by reference") keyword indicates that a parameter is passed in such a way that the invoked
procedure can change the value of the underlying variable.

ByRef is the default method for passing parameters and therefore does not have to be explicitly specified.
Sub Test (j As Integer) is therefore synonymous with sub Test (ByRef j As Integer).

= ByVal

With ByVal ("by value"), the procedure merely receives a copy of the variable, so that changes to the
parameter’s value inside the procedure do not affect the specified variable.

To pass a parameter by value, place the keyword ByVal in front of the parameter: sub Joe (Byval j As
Integer).

Alternatively, you can achieve this by passing the parameter in parentheses. Here, for example, the
parameter Var3 is passed by value:

SubOne Varl, Var2, (Var3)

Calling functions in DLLs
To call a function in a DLL, it must first be declared with a Declare statement. If the procedure to be called

does not return a value, it is declared as a Sub, otherwise as a Function.

Example:

Declare Function GetPrivateProfileString Lib "Kernel32" (ByVal lpApplicationName
As String, ByVal lpKeyName As String, ByVal lpDefault As String, ByVal
lpReturnedString As String, ByVal nSize As Integer, ByVal lpFileName As String) As
Integer

Declare Sub InvertRect Lib "User32" (ByVal hDC As Integer, aRect As Rectangle)

Once the procedure has been declared, it can be used like any other BASIC function or statement.

Language elements of SoftMaker Basic

File operations

In SoftMaker Basic, you have access to all the usual file operations. Below is a small example. Further
information on the individual statements can be found in the chapter Statements and functions from A to Z.

Example:

Sub FileIO Example
Dim i, Msg
Call Make3Files ()
Msg = "Three test files have been created.
Msg = Msg & "Press OK to delete them."
MsgBox Msg
For i =1 To 3
Kill "TEST" & 1 ' Delete files
Next i
End Sub

n

Sub Make3Files
Dim i, FNum, Fname
For i = 1 To 3

FNum = FreeFile ' Get the next free file number

FName = "TEST" & FNum
Open FName For Output As FNum ' Open file
Print #i, "This is test #" & 1 ' Write to file
Print #i, "Here comes another "; "line"; 1
Next i
Close ' Close all files
End Sub
n
Dialog boxes
You can define your own dialog boxes SoftMaker Basic and then invoke and evaluate them with the Dialog
function.

Dialogs can be created either by manually entering their contents in a dialog definition or through use of the
built-in dialog editor.

A dialog can optionally be connected to a Dialog function, which allows you to dynamically enable and disable
dialog controls and even makes it possible to create nested dialogs.

Dialog definition

To create a dialog box, you need to insert a dialog definition in the script. You can use either the built-in dialog
editor (see the section Using the dialog editor) or enter the dialog definition manually.

Language elements of SoftMaker Basic

On the next pages, we will have a closer look at dialog definitions.

Syntax of a dialog definition

Dialog definitions must be surrounded by the statements Begin Dialog and End Dialog:

Begin Dialog DialogName [X, Y,] Width, Height, Title$ [,.DialogFunction]
' Define your dialog controls here

End Dialog

The individual parameters have the following meaning:

Parameter Description

DialogName Name of the dialog definition. After you have set up the dialog definition, you can declare a
variable of this type (Dim Name As DialogName).

XY Optional. Sets the screen coordinates for the upper left corner of the dialog box (in screen pixels).
Width, Height Sets the width and height of the dialog (in screen pixels).

Title$ The title of the dialog. It will be shown in the title bar of the dialog.

.DialogFunction The (optional) dialog function for this dialog. Allows you to dynamically enable and disable dialog

controls while the dialog is displayed and makes it possible to create nested dialogs (see the
section The dialog function).

Inside the dialog definition, you can define the dialog controls that you want to display. Use the keywords
covered on the next pages for this.

Example:

Sub Main
Begin Dialog QuitDialogTemplate 16, 32, 116, 64, "Quit?"
Text 4, 8, 108, 8, "Would you like to quit the program?"
CheckBox 32, 24, 63, 8, "Save changes", .SaveChanges
OKButton 12, 40, 40, 14
CancelButton 60, 40, 40, 14
End Dialog

Dim QuitDialog As QuitDialogTemplate

rc% = Dialog(QuitDialog)

v o)

Here you can evaluate the result (rc%) of the dialog

End Sub

Controls of a dialog box

The following controls can be used in dialog boxes:

= Command buttons

Language elements of SoftMaker Basic

Text and input boxes

List boxes, combo boxes and drop-down lists

Check boxes

= Radio buttons and group boxes

See the next pages for detailed information on each type of control.

Command buttons

The OK and Cancel buttons are known as command buttons.

Note: Every dialog must contain at least one command button.

7 OK and Cancel X |

Abbrechen

Syntax:
OKButton X, Y, Width, Height
CancelButton X, Y, Width, Height
Example:
Sub Main

Begin Dialog ButtonSample 16, 32, 180, 96, "OK and Cancel"
OKButton 132, 8, 40, 14
CancelButton 132, 28, 40, 14

End Dialog

Dim Dlgl As ButtonSample
rc$ = Dialog (Dlgl)

End Sub

Language elements of SoftMaker Basic

Text and input boxes

You can use Text to label the components of a dialog.

Input fields (TextBox statement) accept text input from the user.

B | Text and input boxes x

[put figld:

Abbrechen

Syntax:
Text X, Y, Width, Height, Text
TextBox X, Y, Width, Height, .ID
ID is a variable that contains the current text.

Example:
Sub Main

Begin Dialog TextBoxSample 16, 30, 180, 96, "Text and input boxes"
OKButton 132, 20, 40, 14
CancelButton 132, 44, 40, 14
Text 8, 8, 32, 8, "Input field:"
TextBox 8, 20, 100, 12, .TextBoxl
End Dialog

Dim Dlgl As TextBoxSample
rc$ = Dialog(Dlgl)

End Sub

List boxes, combo boxes and drop-down lists

List boxes show lists from which the user can select an option.

There are three types of list boxes:

Language elements of SoftMaker Basic

= Standard list boxes

Here, the user can choose one of the options from the list.

= Combo boxes

Here, the user can either choose from a list of entries or manually enter his or her own input.
= Drop-down list boxes

A space saving version of list boxes: The user must open it up before being able to choose an option.

B List box, combo box and drop-down list X
Ligt bow: Combo bos: Dirop-dawn list:
[|List entiy 2 |List Entry 3 j
Ligt Entry 2 .
: | Lizt Entry 1
Lizt Entry 3 ;
Lizt Entry 4 List Entry 2 |
List Ertry 3 Abbrechen
Ligt Entry 4
Syntax:

ListBox X, Y, Width, Height, Content, .ID
ComboBox X, Y, Width, Height, Content, .ID
DropListBox X, Y, Width, Height, Content, .ID

The individual text entries are set through the string array Content which you need to fill before displaying the
dialog.

ID is a variable that contains the currently selected item: For ListBox and DropListBox this is a number (the
index), for ComboBox it is text.

Example:
Sub Main

Dim MyList$ (5)
MyList (0) = "List Entry 1"

MyList (1) = "List Entry 2"
MyList (2) = "List Entry 3"
MyList (3) = "List Entry 4"
MyList (4) = "List Entry 5"
MyList (5) = "List Entry 6"

Begin Dialog BoxSample 16,35,256,89,"List box, combo box and drop-down list"
OKButton 204, 24, 40, 14
CancelButton 204, 44, 40, 14
ListBox 12, 24, 48, 40, MyList$(), .Lstbox
DropListBox 124, 24, 72, 40, MyList$(), .DrpList
ComboBox 68, 24, 48, 40, MyList$(), .CmboBox
Text 12, 12, 32, 8, "List box:"
Text 124, 12, 68, 8, "Drop-down list:"

Language elements of SoftMaker Basic

Text 68, 12, 44, 8, "Combo box:"
End Dialog

Dim Dlgl As BoxSample
Dlgl.Lstbox = 0

Dlgl.CmboBox = "List entry 2"
Dlgl.DrplList = 2

rc% = Dialog(Dlgl)

End Sub

Check boxes

Check boxes are suitable for "Yes/No" or "On/Off" choices.

8 Check boxes ¥ |

[Check box1

[Check box 2

[Ehsck box 2 Abbrechen
[Check box 4
Syntax: CheckBox X, Y, Width, Height, Text, .ID

ID is a variable that contains the current state.

Example:
Sub Main

Begin Dialog CheckSample 15, 32, 149, 96, "Check boxes"
OKButton 92, 8, 40, 14
CancelButton 92, 32, 40, 14
CheckBox 12, 8, 60, 8, "Check box 1", .CheckBoxl
CheckBox 12, 24, 60, 8, "Check box 2", .CheckBox2
CheckBox 12, 40, 60, 8, "Check box 3", .CheckBox3
CheckBox 12, 56, 60, 8, "Check box 4", .CheckBox4

End Dialog

Dim Dlgl As CheckSample
rc% = Dialog(Dlgl)

End Sub

Language elements of SoftMaker Basic

Radio buttons and group boxes

You use radio buttons (also called "option buttons") if you want to allow the user to choose from more than one
option, but allow him or her to pick only one of them.

Radio buttons that belong together are usually put inside a group box. You can also use group boxes to visually
group together any other type of dialog controls.

i ' Radic buttons and group boxes x)
Group bow Group bow
f* Radio button | Check box
£ Radio button | Check box

Abbrechen

Syntax:
OptionButton X, Y, Width, Height, Text, IDI
OptionGroup ./D2
ID] is a variable that contains the current state of the field.
ID?2 is a variable that contains the index of the currently selected option.

Example:
Sub Main

Begin Dialog GroupSample 31, 32, 185, 96, "Radio buttons and group boxes"
OKButton 28, 68, 40, 14
CancelButton 120, 68, 40, 14
GroupBox 12, 8, 72, 52, "Group box", .GroupBoxl
GroupBox 100, 8, 72, 52, "Group box", .GroupBox2
OptionGroup .OptionGroupl
OptionButton 16, 24, 54, 8, "Radio button", .OptionButtonl
OptionButton 16, 40, 54, 8, "Radio button", .OptionButton2
CheckBox 108, 24, 50, 8, "Check box", .CheckBoxl
CheckBox 108, 40, 50, 8, "Check box", .CheckBox2

End Dialog

Dim Dlgl As GroupSample
Button = Dialog (Dlgl)

End Sub

Language elements of SoftMaker Basic

The dialog function

You can optionally connect a user-defined dialog box to a dialog function. This function is invoked whenever
the dialog field is initialized or the user interacts with a dialog control. With the help of a dialog function, it is
possible to nest dialogs and to enable or disable dialog controls.

To connect a dialog box to a dialog function, append the function's name to the dialog definition, with a period
in front of it. Here, for example, the dialog MyDIg will be connected to the dialog function with the name
MyDIgFunc:

Begin Dialog MyDlg 60, 60, 260, 188, "Test", .MyDlgFunc

Monitoring dialog controls

Every control in the dialog box that you wish to monitor in the dialog function must have a unique identifier. It
must be given as the last parameter of the control definition and must start with a period.

CheckBox 8, 56, 203, 16, "Show all", .Chkl

Here, the identifier "Chk1" is assigned to the check box.

Syntax of the dialog function
The syntax of the dialog function is as follows:

Function FunctionName (ControlID$, Action%, SuppValue%)
[Statements]
FunctionName = ReturnValue

End Function

The dialog function returns a value if the user clicks on OK or Cancel. If you set this ReturnValue in the dialog
function to 0, the dialog will close; with any other value, the dialog stays open.

The parameters of the dialog function:
= ControllID$

If Action = 2, this parameter contains the ID of the dialog control that the user activated (the value of the ID
was defined in the dialog definition).

= Action%
1 when the dialog is initialized (in this case, the other parameters have no meaning).

2 when the user activates a dialog control. The dialog control is identified through Control/ID$, and
SuppValue% contains additional information.

= SuppValue%:
Information on the type of change that was made, depending on the type of the dialog control:

Check box: If the box is unchecked, this is 0, else 1.

Language elements of SoftMaker Basic

Radio button: The number of the selected radio button, with the first field of the radio button group
having the number O.

Command button: No meaning
OK: 1
Cancel: 2

In the following example, the dialog function of a dialog is evaluated by means of a Case branch. The
parameter SuppValue is not tested in this example.

Sub Main

Begin Dialog UserDialogl 60,60, 260, 188, "Dialog Function", .Dialogfn
Text 8, 10, 73, 13, "Text:"
TextBox 8, 26, 160, 18, .FText
CheckBox 8, 56, 203, 16, "Show all",. Chkl
GroupBox 8, 79, 230, 70, "Group box:", .Group
CheckBox 18, 100, 189, 16, "Change the button caption", .Chk2
PushButton 18, 118, 159, 16, "Button", .History
OKButton 177, 8, 58, 21
CancelButton 177, 32, 58, 21
End Dialog

Dim Dlgl As UserDialogl
x = Dialog(Dlgl)

End Sub ' (Main)
Function Dialogfn(ControlID$, Action%, SuppValue$%)

Begin Dialog UserDialog2 160,160, 260, 188, "Dialog Function", .Dialogfunction
Text 8,10,73,13, "Input Field"
TextBox 8, 26, 160, 18, .FText
CheckBox 8, 56, 203, 16, "Check box ",. chl
CheckBox 18, 100, 189, 16, "Check box", .ch2
PushButton 18, 118, 159, 16, "Button", .butl
OKButton 177, 8, 58, 21
CancelButton 177, 32, 58, 21
End Dialog

Dim Dlg2 As UserDialog2
D1g2.FText = "This is the result"

Select Case Action%

Case 1
DlgEnable "Group", O
DlgVisible "Chk2", 0
DlgVisible "History", O

Case 2
If ControlID$ = "Chkl" Then
DlgEnable "Group"
DlgVisible "Chk2"
DlgVisible "History"
End If

If ControlID$ = "Chk2" Then
DlgText "History", "Show another dialog"
End If

Language elements of SoftMaker Basic

If ControlID$ = "History" Then
Dialogfn = 1
x = Dialog(Dlg2)
End If
Case Else

End Select
Dialogfn = 1

End Function

OLE Automation

With help from OLE Automation, suitable applications (such as TextMaker or PlanMaker) can be controlled
from SoftMaker Basic scripts.

Tip: Detailed information on programming TextMaker and PlanMaker can be found in the chapters
BasicMaker and TextMaker and BasicMaker and PlanMaker, respectively.

What is an OLE Automation object?

Every OLE Automation-capable program provides specific objects for scripting the application. The type of
these objects depends on the application. A word processor like TextMaker provides objects which, for
example, show the number of currently open documents or the formatting of the currently selected text.

OLE Automation objects offers two ways of access:

= The properties of OLE Automation objects are values that can be read and/or written and describe a certain
characteristic of an object. A document window of a word processor has for example the following
properties: name (of the opened document), width and height of the window, etc.

= Methods are functions that trigger an action in an OLE Automation object. An open document has for
example a method to save it to disk.

Accessing OLE Automation objects

To access an OLE Automation object, you first must declare a variable of the type Object.
Example:

Dim MyObj As Object

This must then be "connected" to the application. There are two functions for this: While CreateObject starts
the application automatically if it is not already running, GetObject can only connect to an instance of an
application that is already running.

Example:

Set MyObj = CreateObject ("TextMaker.Application")

Language elements of SoftMaker Basic

The variable Myobj now contains a reference to the main OLE Automation object of the application and
incidentally its name is always Application. You can access its child objects through dot notation — for
example MyObj.Application.Documents (see also the next section).

If the OLE Automation connection is no longer needed, the variable should be separated from the object by
setting its value to Nothing:

Example:

Set MyObj = Nothing ' Detach variable from object

Properties
To access the properties of an object, use dot notation in the style Object.Property.

Example:

x = MyObj.Application.Width ' Retrieve the width of the program window

Or:

MyObj.Application.Width = 5 ' Set the width of the program window

Methods
When calling methods, dot notation is also used: Object.Method

Example:

MyObj.Application.Quit ' Exit from the application

Using collections
Apart from simple objects, there are also collections of objects.

TextMaker, for example, offers the collection Documents (a collection of all open documents). A collection is
itself an object that is usually accessible through a property of its parent object.

You can use the For Each Next statement to enumerate all elements of a collection.

All collections offer the following properties and methods by default:

Count Returns the number of elements (read-only).
Item(i) Provides the i-th element.

Add Adds a new object to the collection.
Example

Let us conclude with an example that demonstrates the use of OLE Automation in practice. The example uses
TextMaker's Documents collection which represents all currently open documents. In the first step, it is
determined how many documents are currently open. Then the names of the opened documents are output.
Finally, the documents are closed.

Language elements of SoftMaker Basic

Tip: Detailed information on the subjects BasicMaker and TextMaker and BasicMaker and PlanMaker can
be found in their respective chapters.

Sub Main

Dim tm As Object
Set tm = CreateObject ("TextMaker.Application")

tm.Visible = True ' Make TextMaker visible
tm.Activate ' Bring TextMaker to the foreground
tm.Documents.Add ' Create three new documents

tm.Documents.Add

tm.Documents.Add

Print tm.Documents.Count & " open documents"
Dim x As Object

For Each x in tm.Documents

Print x.Name ' Output the names of the documents
Next
tm.Documents.Close ' Close all documents
Set tm = Nothing ' Cut the connection to TextMaker

End Sub

BasicMaker and TextMaker

BasicMaker and TextMaker

BasicMaker was mainly developed for allowing the user to script TextMaker and PlanMaker, in other words
"control" or "program" them. This chapter contains all information on programming TextMaker. It contains the
following sections:

= Programming TextMaker

This section contains all the basic information required to program the word processor TextMaker with
BasicMaker.

= TextMaker’s object model

This chapter describes all objects exposed by TextMaker for programming.

Note: Programming PlanMaker is covered in a separate chapter: BasicMaker and PlanMaker.

Programming TextMaker

Programming the word processor TextMaker and the spreadsheet program PlanMaker is practically identical.
The only difference is that some keywords have different names (for example PlanMaker.Application instead of
TextMaker.Application). If you have already worked through the section Programming PlanMaker you will
notice that the section you are currently reading is almost identical to it.

Naturally, the objects exposed by TextMaker are different from those of PlanMaker. A list of all objects
exposed can be found in the next section TextMaker's object model.

To program TextMaker with BasicMaker, you mainly use OLE Automation commands. General information on
this subject can be found in section OLE Automation.

Follow this schematic outline (see below for details):
1. Declare a variable of type Object:
Dim tm as Object

2. Make a connection to TextMaker via OLE Automation (this will launch TextMaker automatically if it is not
already running):

Set tm = CreateObject ("TextMaker.Application")
3. Set the property Application.Visible to True to make TextMaker visible:
tm.Application.Visible = True

4. Now you can program TextMaker by reading and writing its "properties” and by invoking the "methods" it
provides.

5. As soon as the TextMaker object is not required anymore, you should cut the connection to TextMaker:

BasicMaker and TextMaker

Set tm = Nothing

This was just a quick rundown of the necessary steps. More detailed information on programming TextMaker
follows on the next pages. A list of all TextMaker objects and their respective properties and methods can be
found in the section TextMaker's object model.

Connecting to TextMaker

In order to control TextMaker from BasicMaker, you first need to connect to TextMaker via OLE Automation.
For this, first declare a variable of type Object, then assign to it the object "TextMaker.Application" through
use of the CreateObject function.

Dim tm as Object
Set tm = CreateObject ("TextMaker.Application")

If TextMaker is already running, this function simply connects to TextMaker; if not, then TextMaker will be
started beforehand.

The object variable "tm" now contains a reference to TextMaker.

Important: Making TextMaker visible

Please note: If you start TextMaker in the way just described, its application window will be invisible by
default. In order to make it visible, you must set the property Visible to True.

The complete chain of commands should therefore be as follows:

Dim tm as Object
Set tm = CreateObject ("TextMaker.Application")
tm.Application.Visible = True

The "Application" object

The fundamental object that TextMaker exposes for programming is Application. All other objects — such as
collections of open documents and windows — are attached to the Application object.

The Application object contains not only its own properties (such as Application.Left for the x coordinate of
the application window) and methods (such as Application.Quit for exiting from TextMaker), but also
contains pointers to other objects, for example Application.Options, that in turn have their own properties and
methods and pointers to collections such as Documents (the collection of all currently open documents).

Notations

As mentioned in the previous section, you need to use dot notation as usual with OLE Automation to access the
provided properties, methods, etc.

For example, Application.Left lets you address the Left property of the Application object.
Application.Documents.Add references the Add method of the Documents collection which in turn is a
member of Application.

BasicMaker and TextMaker

Getting and setting TextMaker properties

As soon as a connection with TextMaker has been made, you can "control" the application. For this, properties
and methods are provided — this has already been discussed in the section OLE Automation.

Let's first talk about properties. Properties are options and settings that can be retrieved and sometimes

modified.

For example, if you wish to retrieve TextMaker's application name, you can use the Name property of the
Application object:

MsgBox "The name of this application is " & tm.Application.Name

Application.Name is a property that can only be read, but not written to. Other properties can be both retrieved
and changed from BasicMaker scripts. For example, the coordinates of the TextMaker application window are
stored in the properties Left, Top, Width und Height of the Application object. You can retrieve them as
follows:

MsgBox "The left window position is at: " & tm.Application.Left
But you can also change the content of this property:

tm.Application.Left = 200

TextMaker reacts immediately and moves the left border of the application window to the screen position 200.
You can also mix reading and changing the values of properties, as in the following example:

tm.Application.Left = tm.Application.Left + 100

Here, the current left border value is retrieved, increased by 100 and set as the new value for the left border.
This will instruct TextMaker to move its left window position 100 pixels to the right.

There is a large number of properties in the Application object. A list of them can be found in the section
TextMaker's object model.

Using TextMaker’s methods

In addition to properties, methods exist and they implement commands that direct TextMaker to execute a
specific action.

For example, Application.Quit instructs TextMaker to stop running and Application.Activate lets you force
TextMaker to bring its application window to the foreground, if it's covered by windows from other
applications:

tm.Application.Activate

BasicMaker and TextMaker

Function methods and procedure methods

There are two types of methods: those that return a value to the BASIC program and those that do not. The
former are called (in the style of other programming languages) "function methods" or simply "functions", the
latter "procedure methods" or simply "procedures".

This distinction may sound a bit picky to you, but it is not because it effects on the notation of instructions.
As long as you call a method without parameters, there is no syntactical difference:

Call as procedure:

tm.Documents.Add ' Add a document to the collection of open documents

Call as function:

Dim newDoc as Object
Set newDoc = tm.Documents.Add ' The same (returning an object this time)

As soon as you access methods with parameters, you need to employ two different styles:
Call as procedure:
tm.ActiveDocument.Tables.Add 3, 3 ' Insert a 3-by-3 table

Call as function:

Dim newTable as Object
Set newTable = tm.ActiveDocument.Tables.Add (3, 3) ' now with a return value

As you can see, if you call the method as a procedure, you may not surround the parameters with parentheses. If
you call it as a function, you must surround them with parentheses.

Using pointers to other objects

A third group of members of the Application object are pointers to other objects.

This may first sound a bit abstract at first, but is actually quite simple: It would clutter the Application object if
all properties and methods of TextMaker were attached directly to the Application method. To prevent this,
groups of related properties and methods have been parceled out and placed into objects of their own. For
example, TextMaker has an Options object that lets you retrieve and modify many fundamental program
settings:

tm.Application.Options.CreateBackup = True

MsgBox "Overwrite mode activated? " & tm.Application.Options.Overtype

Using collections

The fourth group of members of the Application object are pointers to collections.

BasicMaker and TextMaker

Collections are, as their name indicates, lists of objects belonging together. For example, there is a collection
called Application.Documents that contains all open documents and a collection called
Application.RecentFiles with all files that are listed in the history section of the File menu.

There are two standardized ways of accessing collections and TextMaker supports both. The more simple way
is through the Item property that is part of every collection:

' Display the name of the first open document:
MsgBox tm.Application.Documents.Item(1l) .Name

' Close the (open) document "Test.tmdx":
tm.Application.Documents.Item("Test.tmdx") .Close

If you wish to list all open documents, for example, first find out the number of open documents through the
standardized Count property, then access the objects one by one:

' Return the names of all open documents:

For 1 = 1 To tm.Application.Documents.Count
MsgBox tm.Application.Documents.Item (i) .Name

Next i

Every collection contains, by definition, the Count property which lets you retrieve the number of entries in the
collection and the Item property that lets you directly access one entry.

Item always accepts the number of the desired entry as an argument. Where it makes sense, it is also possible to
pass other arguments to Item, for example file names. You have seen this already above, when we passed both
a number and a file name to Item.

For most collections, there is a matching object type for their individual entries. Individual entries of the
collection Windows, for example, that are returned by Item are of the type Window — note the use of the
singular! One entry of the Documents collection is called Document, and one entry of the RecentFiles
collection is called RecentFile.

A more elegant approach to collections: For Each ... Next

There is a more elegant way to access all entries in a collection consecutively: BasicMaker also supports the
For Each statement:

' Display the names of all open documents
Dim x As Object

For Each x In tm.Application.Documents
MsgBox x.Name
Next x

This gives the same results as the method previously described:

For 1 = 1 To tm.Application.Documents.Count
MsgBox tm.Application.Documents.Item (i) .Name
Next i

Additional properties and methods of collections

Some collections may have their own properties and methods, in addition to the standard members Item and
Count. For example, if you wish to create an empty document in TextMaker, this is achieved by adding a new
entry to its Documents collection:

BasicMaker and TextMaker

tm.Application.Documents.Add ' Create an empty document

Hints for simplifying notations

If you are beginning to wonder whether so much typing is really necessary to address a single document, we can
reassure you that it's not! There are several ways to reduce the amount of typing required.

Using the With statement
The first shortcut is to use the With statement when addressing multiple members of the same object.

First, the conventional style:

tm.Application.Left = 100
tm.Application.Top = 50
tm.Application.Width = 500
tm.Application.Height = 300
tm.Application.Options.CreateBackup = True
MsgBox tm.Application.ActiveDocument.Name

This code looks much clearer through use of the With statement:

With tm.Application
.Left = 100
.Top = 50
.Width = 500
.Height = 300
.Options.CreateBackup = True
MsgBox .ActiveDocument.Name
End With

Setting up object variables

The next abbreviation is to create helper object variables for quickly accessing their members. Compare the
following statements:

Complicated:
Sub Complicated

Dim tm As Object

Set tm = CreateObject ("TextMaker.Application")
tm.Application.Visible = True ' Make TextMaker visible
tm.Application.Documents.Add ' Add document
tm.Application.ActiveDocument.Left = 100
tm.Application.ActiveDocument.Top = 50
tm.Application.ActiveDocument.Width = 222
tm.Application.ActiveDocument.Height = 80

End Sub

Easier:

Sub Better

BasicMaker and TextMaker

Dim tm As Object

Dim NewDocument As Object

Set tm = CreateObject ("TextMaker.Application")
tm.Application.Visible = True ' Make TextMaker visible

Set NewDocument = tm.Application.Documents.Add ' Add document
NewDocument.Left = 100

NewDocument.Top = 50

NewDocument.Width = 222

NewDocument.Height = 80

End Sub

After you created the object variable "NewDocument" in the second example and stored a reference to the new
document in it (which conveniently is returned by the Add method of the Documents collection), you can
access the new document much more easily through this helper object variable.

Save time by omitting default properties

There is yet another way to reduce the amount of typing required: Each object (for example, Application or
Application.Documents) has one of its properties marked as its default property. Conveniently enough, you
can always leave out default properties.

The default property of Application, for example, is Name. Therefore, the two following instructions are

equivalent:
MsgBox tm.Application.Name ' displays the name of TextMaker
MsgBox tm.Application ' does exactly the same

Typically, the property that is used most often in an object has been designated its default property. For
example, the most used property of a collection surely is the Item property, as the most common use of
collections is to return one of their members. The following statements therefore are equivalent:

MsgBox tm.Application.Documents.Item(1l) .Name
Finally things are getting easier again!

But it gets even better: Name is the default property of a single Document object (note: "Document", not
"Documents"!). Each Item of the Document collection is of the Document type. As Name is the default
property of Document, it can be omitted:

MsgBox tm.Application.Documents (1)

Not easy enough yet? OK... Application is the default property of TextMaker. So, let's just leave out
Application as well! The result:

MsgBox tm.Documents (1)

This basic knowledge should have prepared you to understand TextMaker's object model. You can now
continue with the section TextMaker's object model that contains a detailed list of all objects that TextMaker
provides.

BasicMaker and TextMaker

TextMaker’s object model

TextMaker provides BasicMaker (and all other OLE Automation compatible programming languages) with the
objects listed below.

Notes:
= Properties marked with "R/O" are "Read Only" (i.e. write-protected). They can be read, but not changed.
= The default property of an object is marked in italics.

The following table lists all objects and collections available in TextMaker:

Name Type Description

Application Object "Root object" of TextMaker

Options Object Global options

UserProperties Collection Collection of all components of the user's address

UserProperty Object An individual component of the user's address

CommandBars Collection Collection of all toolbars (toolbars work only in classic mode; they do not work
with ribbons)

CommandBar Object A single toolbar (toolbars work only in classic mode; they do not work with
ribbons)

AutoCorrect Object Automatic text correction and SmartText

AutoCorrectEntries Collection Collection of all SmartText entries

AutoCorrectEntry Object An individual SmartText entry

Documents Collection Collection of all open documents

Document Object An individual open document

DocumentPropertie Collection Collection of all document properties of a document

S

DocumentProperty Object An individual document property

PageSetup Object The page settings of a document

Selection Object The selection or cursor in a document

Font Object The character formatting of the selection

Paragraphs Collection Collection of all paragraphs in a document

BasicMaker and TextMaker

Name Type Description

Paragraph Object An individual paragraph in a document
Range Object Starting and ending position of a paragraph
DropCap Object The drop cap character of a paragraph
Tables Collection Collection of all tables in a document
Table Object An individual table

Rows Collection Collection of all table rows in a table

Row Object An individual table row

Cells Collection Collection of all cells in a table row

Cell Object An individual table cell

Borders Collection Collection of all border lines (left, right, top, bottom, etc.) of a paragraph, a

table, a table row, or a cell

Border Object An individual border line

Shading Object The shading of paragraphs, tables, table rows and cells
FormFields Collection Collection of all form objects in a document
FormField Object An individual form object

TextInput Object An individual form object, viewed as a text field
CheckBox Object An individual form object, viewed as a check box
DropDown Object An individual form object, viewed as a selection list
ListEntries Collection Collection of all entries in a selection list

ListEntry Object An individual entry in a selection list

Windows Collection Collection of all open document windows

Window Object An individual open document window

View Object The view settings of a document window

Zoom Object The zoom level of a document window

RecentFiles Collection Collection of all recently opened files, as listed in the File menu
RecentFile Object An individual recently opened file

FontNames Collection Collection of all installed fonts

BasicMaker and TextMaker

Name Type Description

FontName Object An individual installed font

Detailed descriptions of all objects and collections follow on the next pages.

Application (object)

Access path: Application

ﬂ Description

Application is the "root object" for all other objects in TextMaker. It is the central control object that is used to
carry out the whole communication between your Basic script and TextMaker.

ﬂ Access to the object

There is exactly one instance of the Application object. It is available during the whole time that TextMaker is
running and accessed directly through the object variable returned by the CreateObject function:

Set tm = CreateObject ("TextMaker.Application")
MsgBox tm.Application.Name

As Application is the default property of TextMaker, it can generally be omitted:

Set tm = CreateObject ("TextMaker.Application")
MsgBox tm.Name ' has the same meaning as tm.Application.Name

ﬂ Properties, objects, collections and methods

Properties:

* FullName R/O

= Name R/O (default property)
= Path R/O

= Build R/O

= Bits R/O

= Visible

= Caption R/O

= Left

= Top

* Width

= Height

= WindowState

= DisplayScrollBars

Objects:

BasicMaker and TextMaker

= ActiveDocument — Document

= ActiveWindow — Window

= Options — Options

= UserProperties - UserProperties
= CommandBars - CommandBars
= AutoCorrect > AutoCorrect

= Application — Application

Collections:

* Documents — Documents
= Windows — Windows

= RecentFiles — RecentFiles
* FontNames — FontNames

Methods:

= CentimetersToPoints
= MillimetersToPoints
= InchesToPoints

= PicasToPoints

= LinesToPoints

= Activate

= Quit

FullName (property, R/0)

Data type: String
Returns the name and path of the program (e.g. "C:\Program Files\SoftMaker Office\TextMaker.exe").

Name (property, R/0)
Data type: String

Returns the name of the program, in this case "TextMaker".

Path (property, R/0)
Data type: String
Returns the path of the program, for example "C:\Program Files\SoftMaker Office\".

Build (property, R/0)
Data type: String

Returns the build number of the program as a string, for example "1000".

BasicMaker and TextMaker

Bits (property, R/0)
Data type: String

Returns a string with the "bitness" of the program: "32" for the 32-bit version of TextMaker and "64" for the 64
bit version.

Visible (property)
Data type: Boolean

Gets or sets the visibility of the program window:

rue ' TextMaker becomes visible
alse ' TextMaker becomes be invisible

tm.Application.Visible

=T
tm.Application.Visible = F

Important: By default, Visible is set to False — thus, TextMaker is initially invisible until you explicitly
make it visible.

Caption (property, R/0)
Data type: String

Returns a string with the contents of the title bar of the program window (e.g. "TextMaker - Readme.tmdx").

Left (property)
Data type: Long

Gets or sets the horizontal position (= left edge) of the program window on the screen, measured in screen
pixels.

Top (property)

Data type: Long

Gets or sets the vertical position (= top edge) of the program window on the screen, measured in screen pixels.

Width (property)
Data type: Long

Gets or sets the width of the program window on the screen, measured in screen pixels.

Height (property)

Data type: Long

BasicMaker and TextMaker

Gets or sets the height of the program window on the screen, measured in screen pixels.

WindowState (property)
Data type: Long (SmoWindowState)

Gets or sets the current state of the program window. The possible values are:

smoWindowStateNormal = 1 ' normal
smoWindowStateMinimize = 2 ' minimized
smoWindowStateMaximize = 3 ' maximized

DisplayScrollBars (property)

Data type: Boolean

Gets or sets the option which indicates whether the document is shown with both a horizontal and a vertical
scrollbar.

ActiveDocument (pointer to object)

Data type: Object

Returns the currently active Document object that you can use to access the active document.

ActiveWindow (pointer to object)

Data type: Object

Returns the currently active Window object that you can use to access the active document window.

Options (pointer to object)

Data type: Object

Returns the Options object that you can use to access global program settings of TextMaker.

UserProperties (pointer to object)
Data type: Object

Returns the UserProperties object that you can use to access the name and address of the user (as entered on
the General tab of the ribbon command File | Options).

CommandBars (pointer to object)

Data type: Object

BasicMaker and TextMaker

Returns the CommandBars object that you can use to access the toolbars of TextMaker.

Note: Toolbars work only in classic mode. They do not work with ribbons.

AutoCorrect (pointer to object)

Data type: Object

Returns the AutoCorrect object that you can use to access the automatic correction settings of TextMaker.

Application (pointer to object)
Data type: Object

Returns the Application object, i.e. the pointer to itself. This object pointer is basically superfluous and only
provided for the sake of completeness.

Documents (pointer to collection)

Data type: Object

Returns the Documents collection, a collection of all currently open documents.

Windows (pointer to collection)
Data type: Object

Returns the Windows collection, a collection of all currently open document windows.

RecentFiles (pointer to collection)

Data type: Object

Returns the RecentFiles collection, a collection of the recently opened documents (as displayed at the bottom
of TextMaker's File menu).

FontNames (pointer to collection)
Data type: Object

Returns the FontNames collection, a collection of all installed fonts.

CentimetersToPoints (method)

Converts the given value from centimeters (cm) to points (pt). This function is useful when you make
calculations in centimeters, but a TextMaker function accepts only points as its measurement unit.

Syntax:

BasicMaker and TextMaker

CentimetersToPoints (Centimeters)
Parameters:

Centimeters (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the top margin of the active document to 3cm
tm.ActiveDocument.PageSetup.TopMargin = tm.Application.CentimetersToPoints (3)

MillimetersToPoints (method)

Converts the given value from millimeters (mm) to points (pt). This function is useful if you make calculations
in millimeters, but a TextMaker function accepts only points as its measurement unit.

Syntax:

MillimetersToPoints (Millimeters)
Parameters:

Millimeters (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the top margin of the active document to 30mm
tm.ActiveDocument.PageSetup.TopMargin = tm.Application.MillimetersToPoints (30)

InchesToPoints (method)

Converts the given value from inches to points (pt). This function is useful if you make calculations in inches,
but a TextMaker function accepts only points as its measurement unit.

Syntax:

InchesToPoints (Inches)
Parameters:

Inches (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the bottom margin of the active document to 1 inch

BasicMaker and TextMaker

tm.ActiveDocument.PageSetup.BottomMargin = tm.Application.InchesToPoints (1)

PicasToPoints (method)

Converts the given value from picas to points (pt). This function is useful if you make calculations in picas, but
a TextMaker function accepts only points as its measurement unit.

Syntax:

PicasToPoints (Picas)
Parameters:

Picas (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the bottom margin of the active document to 6 picas
tm.ActiveDocument.PageSetup.BottomMargin = tm.Application.PicasToPoints (6)

LinesToPoints (method)
Identical to the PicasToPoints method (see there).

Syntax:

LinesToPoints (Lines)
Parameters:

Lines (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the bottom margin of the active document to 6 picas
tm.ActiveDocument.PageSetup.BottomMargin = tm.Application.LinesToPoints (6)

Activate (method)
Brings the program window to the foreground and sets the focus to it.
Syntax:
Activate
Parameters:

none

BasicMaker and TextMaker

Return type:
none

Example:

' Bring TextMaker to the foreground
tm.Application.Activate

Note: This command is only successful if Application.Visible = True.

Quit (method)
Ends the program.
Syntax:

Quit
Parameters:

none
Return type:

none

Example:

' End TextMaker
tm.Application.Quit

If there are any unsaved documents open, the user will be asked if they should be saved. If you want to avoid
this question, you need to either close all opened documents in your program or set the property Saved for the
documents to True (see Document).

Options (object)

Access path: Application = Options

ﬂ Description

The Options object consolidates many global program settings, most of which can be found in the dialog box
of the ribbon command File | Options in TextMaker.

ﬂ Access to the object

There is exactly one instance of the Options object during the whole runtime of TextMaker. It is accessed
through Application.Options:

BasicMaker and TextMaker

Set tm = CreateObject ("TextMaker.Application")
tm.Application.Options.EnableSound = True

ﬂ Properties, objects, collections and methods

Properties:

= AutoFormatReplaceQuotes
= CheckSpellingAsYouType
= ShowSpellingErrors

= ShowGermanSpellingReformErrors
= CreateBackup

= DefaultFilePath

= DefaultTemplatePath

= EnableSound

= Overtype

= Savelnterval

= SavePropertiesPrompt

= AutoWordSelection

= PasteAdjustWordSpacing
= TabIndentKey

= DefaultFileFormat

Objects:
= Application — Application
= Parent — Application

AutoFormatReplaceQuotes (property)

Data type: Long (SmoQuotesStyle)

Gets or sets the setting whether neutral quotation marks should be automatically converted to typographic ones.
The possible values are:

smoQuotesNeutral = 0 ' Neutral = off
smoQuotesGerman = 1 ' German

smoQuotesSwiss = 2 ' Swiss German
smoQuotesEnglish = 3 ' English

smoQuotesFrench = 4 ' French

smoQuotesAuto = 5 ' Auto, depending on language

CheckSpellingAsYouType (property)
Data type: Boolean

Gets or sets the setting "Background spell-checking" (True or False).

ShowSpellingErrors (property)

Data type: Boolean

BasicMaker and TextMaker

Gets or sets the setting "Underline typos in red" (True or False).

ShowGermanSpellingReformErrors (property)
Data type: Boolean

Gets or sets the setting "Underline old German spelling in blue" (True or False).

CreateBackup (property)

Data type: Boolean

Gets or sets the setting "Create backup files" (True or False).

DefaultFilePath (property)

Data type: String
Gets or sets the file path used by default to save and open documents.

This is just a temporary setting: When you execute the ribbon commands File | Open or File | Save as the next
time, the path chosen here will appear in the dialog box. If the user changes the path, this path will then be the
new default file path.

DefaultTemplatePath (property)

Data type: String
Gets or sets the file path used by default to store document templates.

This setting is saved permanently. Each call to the ribbon command File | New lets you see the document
templates in the path given here.

EnableSound (property)

Data type: Boolean

Gets or sets the setting "Beep on errors” (True or False).

Overtype (property)
Data type: Boolean

Gets or sets Overwrite/Insert mode (True=Overwrite, False=Insert).

Savelnterval (property)
Data type: Long

BasicMaker and TextMaker

Gets or sets the setting "Autosave documents every » minutes" (0=off).

SavePropertiesPrompt (property)
Data type: Boolean

Gets or sets the setting "Prompt for summary information when saving" (True or False).

AutoWordSelection (property)

Data type: Boolean

Gets or sets the setting "Select whole words when selecting” (True or False).

PasteAdjustWordSpacing (property)
Data type: Boolean

Gets or sets the setting "Add or remove spaces when pasting" (True or False).

TabindentKey (property)

Data type: Boolean

Gets or sets the setting "Set left and first line indent with Tab and Backspace keys" (True or False).

DefaultFileFormat (property)
Data type: Long (TmDefaultFileFormat)

Gets or sets the standard file format in which TextMaker saves newly created documents. The possible values
are:

tmDefaultFileFormatTextMaker =
tmDefaultFileFormatWinWordXP =
tmDefaultFileFormatWinWordé
tmDefaultFileFormatOpenDoc =
tmDefaultFileFormatRTF

tmDefaultFileFormatOpenXML
tmDefaultFileFormatTMD =

TextMaker (.tmdx)

Microsoft Word 97/XP/2003 (.doc)
Microsoft Word 6.0/95 (.doc)
OpenDocument (.odt)

RTF Rich Text Format (.rtf)
Microsoft Office Open XML (.docx)
TextMaker 2016 (.tmd)

Il Il
~N o0 W O

Application (pointer to object)
Data type: Object
Returns the Application object.

BasicMaker and TextMaker

Parent (pointer to object)

Data type: Object
Returns the parent object, i.e. Application.

UserProperties (collection)

Access path: Application = UserProperties

n Description

The UserProperties collection contains all components of the user's address (as entered on the General tab in
the dialog box of the ribbon command File | Options).

The individual elements of this collection are of the type UserProperty.

ﬂ Access to the collection

There is exactly one instance of the UserProperties collection during the whole runtime of TextMaker. It is
accessed through Application.UserProperties:

' Show the first UserProperty (the user's name)
MsgBox tm.Application.UserProperties.Item(1l) .Value

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Item — UserProperty (default object)
= Application — Application

= Parent — Application

Count (property, R/0)
Data type: Long

Returns the number of UserProperty objects in the collection, i.e. the number of components in the user's
address (name, street, etc.).

This value is constantly 18, since there are exactly 18 such elements.

BasicMaker and TextMaker

Item (pointer to object)

Data type: Object

Returns an individual UserProperty object that you can use to get or set an individual component of the user's
address (name, street, etc.).

Which UserProperty object you get depends on the numeric value that you pass to Item. The following table
shows the admissible values:

smoUserDataTitle =1 ' Title
smoUserDataName = 2 ' Name
smoUserDataInitials = 3 ' Initials
smoUserDataCompany = 4 ' Company
smoUserDataDepartment = 5 ' Department
smoUserDataAddressl = 6 ' Address field 1
smoUserDataAddress2 = 7 ' Address field 2
smoUserDataZip = 8 ' Postal code
smoUserDataCity =9 ' City
smoUserDataCountry = 10 ' Country
smoUserDataPhonel = 11 ' Phone 1
smoUserDataPhone2 = 12 ' Phone 2
smoUserDataPhone3 = 13 ' Phone 3
smoUserDataFax = 14 ' Fax
smoUserDataEmaill = 15 ' E-mail address 1
smoUserDataEmail2 = 16 ' E-mail address 2
smoUserDataEmail3 = 17 ' E-mail address 3
smoUserDataWebsite = 18 ' Website

Examples:

' Show the name of the user
MsgBox tm.Application.UserProperties.Item(1l) .Value

' Change e-mail address 2 to test@example.com
With tm.Application

.UserProperties.Item(smoUserDatakEmail2) .Value = "test@example.com"
End With

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. Application.

BasicMaker and TextMaker

UserProperty (object)

Access path: Application = UserProperties = Item

ﬂ Description

A UserProperty object represents one individual component of the user's address (for example, the street or the
postal code).

An individual UserProperty object exists for each of these components. The number of these objects is
constant, since you cannot create new address components.

E Access to the object

The individual UserProperty objects can be accessed solely through enumerating the elements of the
Application.UserProperties collection. The type of this collection is UserProperties.

Example:

' Show the contents of the first address element (the name of the user)
MsgBox tm.Application.UserProperties.Item(1l) .Value

ﬂ Properties, objects, collections and methods

Properties:
= Value (default property)

Objects:
= Application — Application
= Parent — UserProperties

Value (property)
Data type: String

Gets or sets the contents of the address component. The following example sets the company name of the user:

Sub Example ()

Set tm = CreateObject ("TextMaker.Application")

tm.UserProperties (smoUserDataCompany) .Value = "ACME Corporation"
End Sub

Application (pointer to object)
Data type: Object

BasicMaker and TextMaker

Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. UserProperties.

CommandBars (collection)

Access path: Application > CommandBars

ﬂ Description

The CommandBars collection contains all of TextMaker's toolbars. The individual elements of this collection
are of the type CommandBar.

Note: Toolbars work only in classic mode. They do not work with ribbons.

ﬂ Access to the collection

There is exactly one instance of the CommandBars collection during the whole runtime of TextMaker. It is
accessed through Application.CommandBars:

' Show the name of the first toolbar
MsgBox tm.Application.CommandBars.Item(1l) .Name

' The same, but easier, using the default property
MsgBox tm.CommandBars (1)

ﬂ Properties, objects, collections and methods

Properties:

= Count R/O

= DisplayFonts

= DisplayTooltips

Objects:

= Item — CommandBar (default object)
= Application — Application

= Parent — Application

Count (property, R/0)

Data type: Long

BasicMaker and TextMaker

Returns the number of CommandBar objects in the collection, i.e. the number of toolbars available.

Note: Toolbars work only in classic mode. They do not work with ribbons.

DisplayFonts (property)
Data type: Boolean

Gets or sets the setting "Show fonts in font lists" (True or False).

DisplayTooltips (property)
Data type: Boolean

Gets or sets the setting whether a tooltip should be displayed when the mouse cursor is pointed to a toolbar
button. Corresponds to the setting "Show tooltips" in the dialog box of PlanMaker's ribbon command Files |
Options.

Item (pointer to object)

Data type: Object
Returns an individual CommandBar object that you can use to access an individual toolbar.
Note: Toolbars work only in classic mode. They do not work with ribbons.

Which CommandBar object you get depends on the value that you pass to Item. You can specify either the
numeric index or the name of the desired toolbar. Examples:

' Make the first toolbar invisible
tm.Application.CommandBars.Item(l) .Visible = False

' Make the toolbar named "Formatting" invisible
tm.Application.CommandBars.Item("Formatting"”) .Visible = False

Note: It is not advisable to hard-code the names of toolbars in your program, since these names are different in
each language that TextMaker's user interface supports. For example, if the user interface language is set to
German, the name of the "Formatting" toolbar changes to "Format".

Instead, it is recommended to use the following symbolic constants for toolbars:

tmBarStatusShort =1 ' Status bar (no documents open)
tmBarStandardShort = 2 ' Standard toolbar (no documents open)
tmBarStatus = 3 ' Status bar

tmBarStandard = 4 ' Standard toolbar
tmBarFormatting = 5 ' Formatting toolbar
tmBarOutliner = 6 ' Outliner toolbar

tmBarObjects = 7 ' Objects toolbar
tmBarFormsEditing = 8 ' Forms toolbar

tmBarMailMerge = 9 ' Mail merge toolbar
tmBarDatabase = 10 ' Database toolbar
tmBarDatabaseStatus = 11 ' Status bar (in database windows)
tmBarTable = 12 ' Table toolbar

tmBarStatistics = 13 ' Statistics toolbar

BasicMaker and TextMaker

tmBarPicture = 14 ' Graphics toolbar
tmBarReviewing = 16 ' Reviewing toolbar
tmBarHeaderAndFooter = 17 ' Header and footer toolbar
tmBarFullscreen = 19 ' Full screen toolbar

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object
Returns the parent object, i.c. Application.

CommandBar (object)

Access path: Application 2 CommandBars - Item

ﬂ Description
A CommandBar object represents one individual toolbar of TextMaker.

An individual CommandBar object exists for each toolbar. If you create new toolbars or delete them, the
respective CommandBar objects will be created or deleted dynamically.

Note: Toolbars work only in classic mode. They do not work with ribbons.

ﬂ Access to the object

The individual CommandBar objects can be accessed solely through enumerating the elements of the
Application.CommandBars collection. The type of this collection is CommandBars.

Example:

' Show the name of the first toolbar
MsgBox tm.Application.CommandBars.Item (1) .Name

' The same, but easier, using the default property
MsgBox tm.CommandBars (1)

ﬂ Properties, objects, collections and methods

Properties:
= Name (default property)

BasicMaker and TextMaker

= Visible

Objects:
= Application — Application
= Parent > CommandBars

Name (property)

Data type: String

Gets or sets the name of the toolbar.

Note: Toolbars work only in classic mode. They do not work with ribbons.

Example:

' Show the name of the first toolbar
MsgBox tm.Application.CommandBars.Item(1l) .Name

Visible (property)

Data type: Boolean

Gets or sets the visibility of the toolbar.

Note: Toolbars work only in classic mode. They do not work with ribbons.

The following example makes the "Formatting" toolbar invisible:

Sub Example ()
Set tm = CreateObject ("TextMaker.Application")
tm.Application.CommandBars.Item("Formatting"”) .Visible = False
End Sub

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.c. CommandBars.

AutoCorrect (object)

Access path: Application > AutoCorrect

BasicMaker and TextMaker

n Description

The AutoCorrect object contains settings related to automatic text correction and all SmartText entries.

E Access to the object

There is exactly one instance of the AutoCorrect object during the whole runtime of TextMaker. It is accessed
through Application.AutoCorrect:

Set tm = CreateObject ("TextMaker.Application")
tm.Application.AutoCorrect.CorrectInitialCaps = True

ﬂ Properties, objects, collections and methods

Properties:

= CorrectInitialCaps

= CorrectSentenceCaps
= ReplaceText

Objects:
= Application — Application
= Parent — Application

Collections:
= Entries —> AutoCorrectEntries

CorrectinitialCaps (property)

Data type: Boolean
Gets or sets the setting "Correct first two uppercase letters".

If this property is True, TextMaker automatically corrects the case of the second letter in words that begin with
two capital letters (for example "HEnry" will be changed to "Henry").

CorrectSentenceCaps (property)

Data type: Boolean
Gets or sets the setting "Capitalize first letter of sentences".

If this property is True, TextMaker capitalizes the first letter of a sentence in case it was accidentally written in
lowercase.

ReplaceText (property)

Data type: Boolean

BasicMaker and TextMaker

Gets or sets the setting "Expand SmartText entries".

If this property is True, SmartText entries entered in the document will be automatically replaced by the
SmartText content (for example: You type "sd" and TextMaker expands it with "sales department").

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.c. Application.

Entries (pointer to collection)
Data type: Object

Returns the AutoCorrectEntries collection which contains all SmartText entries.

AutoCorrectEntries (collection)

Access path: Application 2 AutoCorrect > Entries

n Description

The AutoCorrectEntries collection contains all SmartText entries defined. The individual elements of this
collection are of the type AutoCorrectEntry.

E Access to the collection

There is exactly one instance of the AutoCorrectEntries collection during the whole runtime of TextMaker. It
is accessed through Application.AutoCorrect.Entries:

' Create a SmartText entry named "sd" containing "sales department"

tm.Application.AutoCorrect.Entries.Add "sd", "sales department"

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

BasicMaker and TextMaker

Objects:

= Jtem — AutoCorrectEntry (default object)
= Application — Application

= Parent —> AutoCorrect

Methods:
= Add

Count (property, R/0)
Data type: Long

Returns the number of AutoCorrectEntry objects, i.e. the number of the currently defined SmartText entries.

Item (pointer to object)

Data type: Object

Returns an individual AutoCorrectEntry object, i.e. the definition of an individual SmartText entry.

Which AutoCorrect object you get depends on the value that you pass to Item. You can specify either the
numeric index or the name of the desired SmartText entry. Examples:

' Show the contents of the first defined SmartText entry
MsgBox tm.Application.AutoCorrect.Entries.Item(1l) .Value

' Show the contents of the SmartText entry with the name "sd"
MsgBox tm.Application.AutoCorrect.Entries.Item("sd") .Value

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. AutoCorrect.

Add (method)
Add a new AutoCorrectEntry entry.

Syntax:

Add Name, Value

Parameters:

BasicMaker and TextMaker

Name (type: String): The name of the new SmartText entry. If the name is empty or already exists, the
call to the method fails.

Value (type: String): The text for the new SmartText entry. If the passed string is empty, the call of the
method fails.

Return type:

Object (an AutoCorrectEntry object which represents the new SmartText entry)

Example:

' Create a SmartText entry named "sd" containing "sales department"
tm.Application.AutoCorrect.Entries.Add "sd", "sales department"”

AutoCorrectEntry (object)

Access path: Application = AutoCorrect > Entries = Item

ﬂ Description

An AutoCorrectEntry object represents one individual SmartText entry, for example, "sd" for "sales
department".

An individual AutoCorrectEntry object exists for each SmartText entry. If you create SmartText entries or
delete them, the respective AutoCorrectEntry objects will be created or deleted dynamically.

E Access to the object

The individual AutoCorrectEntry objects can be accessed solely through enumerating the elements of the
collection Application.AutoCorrect.Entries. The type of this collection is AutoCorrectEntries.

Example:

' Show the name of the first SmartText entry
MsgBox tm.Application.AutoCorrect.Entries.Item(1l) .Name

ﬂ Properties, objects, collections and methods

Properties:
= Name (default property)
* Value

Objects:
= Application — Application
= Parent — AutoCorrectEntries

BasicMaker and TextMaker

Methods:
= Delete

Name (property)
Data type: String

Gets or sets the name of the SmartText entry (e.g. "sd").

Value (property)

Data type: String

Gets or sets the contents of the SmartText entry (e.g. "sales department").

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. AutoCorrectEntries.

Delete (method)

Deletes an AutoCorrectEntry object from the AutoCorrectEntries collection.

Syntax:

Delete
Parameters:

none
Return type:

none

Examples:

' Delete the first SmartText entry
tm.Application.AutoCorrect.Entries.Item(1l) .Delete

' Delete the SmartText entry with the name "sd"
tm.Application.AutoCorrect.Entries.Item("sd") .Delete

BasicMaker and TextMaker

Documents (collection)

Access path: Application - Documents

ﬂ Description

The Documents collection contains all open documents. The individual elements of this collection are of the
type Document.

ﬂ Access to the collection

There is exactly one instance of the Documents collection during the whole runtime of TextMaker. It is
accessed through Application.Documents:

' Show the number of open documents
MsgBox tm.Application.Documents.Count

' Show the name of the first open document
MsgBox tm.Application.Documents (1) .Name

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Item — Document (default object)
= Application — Application

= Parent — Application

Methods:
= Add

= Open
= Close

Count (property, R/0)
Data type: Long

Returns the number of Document objects in the collection, i.e. the number of the currently open documents.

Item (pointer to object)

Data type: Object

BasicMaker and TextMaker

Returns an individual Decument object, i.e. an individual open document.

Which Document object you get depends on the value that you pass to Item. You can specify either the numeric
index or the name of the desired document. Examples:

' Show the name of the first document
MsgBox tm.Application.Documents.Item (1) .FullName

' Show the name of the document "Test.tmdx" (if currently open)
MsgBox tm.Application.Documents.Item("Test.tmdx").FullName

' You can also specify the full path
MsgBox tm.Application.Documents.Item("c:\Documents\Test.tmdx") .FullName

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. Application.

Add (method)

Creates a new empty document, based either on the standard document template Normal.tmvx or any other
document template you specify.

Syntax:

Add [Template]
Parameters:

Template (optional; type: String): Path and file name of the document template on which your
document should be based. If omitted, the standard template Normal.tmvx will be used.

If you omit the path or give only a relative path, TextMaker's default template path will be automatically
prefixed. If you omit the file extension .tmvx, it will be automatically added.

Return type:
Object (a Document object which represents the new document)

Example:

Sub Example ()
Dim tm as Object
Dim newDoc as Object

Set tm = CreateObject ("TextMaker.Application")
tm.Visible = True

BasicMaker and TextMaker

Set newDoc = tm.Documents.Add
MsgBox newDoc.Name
End Sub

You can use the Document object returned by the Add method like any other document. Alternatively, you can
ignore the return value of the Add method and access the new document with the ActiveDocument method.

Open (method)

Opens an existing document.

Syntax:

Open FileName, [ReadOnly], [Password], [WritePassword], [Format]

Parameters:
FileName (type: String): Path and file name of the document or document template to be opened.
ReadOnly (optional; type: Boolean): Indicates whether the document should be opened only for reading.

Password (optional; type: String): The read password for password-protected documents. If you omit
this parameter for a password-protected document, the user will be asked to input the read password.

WritePassword (optional; type: String): The write password for password-protected documents. If you
omit this parameter for a password-protected document, the user will be asked to input the write
password.

Format (optional; Typ: Long bzw. TmSaveFormat): The file format of the document to be opened.
Possible values:

tmFormatDocument = 0 ' TextMaker document

tmFormatTemplate = 1 ' TextMaker document template
tmFormatWinWord97 = 2 ' Microsoft Word 97 and 2000
tmFormatOpenDocument = 3 ' OpenDocument, OpenOffice.org, StarOffice
tmFormatRTF = 4 ' Rich Text Format

tmFormatPocketWordPPC = 5 ' Pocket Word for Pocket PCs
tmFormatPocketWordHPC = 6 ' Pocket Word for Handheld PCs (Windows CE)
tmFormatPlainTextAnsi = 7 ' Text file with Windows character set
tmFormatPlainTextDOS = 8 ' Text file with DOS character set
tmFormatPlainTextUnicode = 9 ' Text file with Unicode character set
tmFormatPlainTextUTF8 = 10 ' Text file with UTF8 character set
tmFormatHTML = 12 ' HTML document

tmFormatWinWord6 = 13 ' Microsoft Word 6.0
tmFormatPlainTextUnix 14 ' Text file for UNIX, Linux, FreeBSD
tmFormatWinWordXP 15 ' Microsoft Word XP and 2003
tmFormatTM2006 = 16 ' TextMaker 2006 document

tmFormatOpenXML = 17 ' Microsoft Word 2007 and later

tmFormatTM2008 = 18 ' TextMaker 2008 document

tmFormatOpenXMLTemplate = 22 ' Microsoft Word document template 2007 and
later

tmFormatWinWordXPTemplate = 23 ' Microsoft Word document template XP and 2003

tmFormatTM2012 = 27 ' TextMaker 2012 document
tmFormatTM2016 = 28 ' TextMaker 2016 document
tmFormatTM2016Template = 29 ' TextMaker 2016 document template

If you omit this parameter, the value tmFormatDocument will be assumed.

BasicMaker and TextMaker

Tip: Independent of the value for the FileFormat parameter, TextMaker always tries to determine the
file format by itself and ignores evidently false inputs.

Return type:
Object (a Document object which represents the opened document)

Examples:

' Open a document
tm.Documents.Open "c:\docs\test.tmdx"

' Open a document only for reading
tm.Documents.Open "c:\docs\Test.tmdx", True

Close (method)

Closes all currently open documents.
Syntax:

Close [SaveChanges]
Parameters:

SaveChanges (optional; type: Long or SmoSaveOptions) indicates whether the documents which were
changed since they were last saved should be saved or not. If you omit this parameter, the user will be
asked to indicate it (if necessary). The possible values are:

smoDoNotSaveChanges = 0 ' Don't ask, don't save
smoPromptToSaveChanges = 1 ' Ask the user
smoSaveChanges = 2 ' Save without asking
Return type:
none
Example:

' Close all open documents without saving them
tm.Documents.Close smoDoNotSaveChanges

Document (object)

Access paths:

= Application = Documents = Item

= Application = ActiveDocument

= Application =2 Windows = Item = Document
= Application = ActiveWindow = Document

BasicMaker and TextMaker

n Description
A Document object represents one individual document opened in TextMaker.

An individual Document object exists for each document. If you open or close documents, the respective
Document objects will be created or deleted dynamically.

ﬂ Access to the object
The individual Document objects can be accessed in the following ways:
= All open documents are managed in the Application.Documents collection (type: Documents):

A}

Show the names of all open documents

For i = 1 To tm.Application.Documents.Count
MsgBox tm.Application.Documents.Item(i) .Name
Next i

= The active document can be accessed through the Application.ActiveDocument object:

A}

Show the name of the current document
MsgBox tm.Application.ActiveDocument.Name

= Document is the Parent object for different objects which are linked with it, for example,
BuiltiInDocumentProperties or Selection:

A}

Show the name of the current document in an indirect way
MsgBox tm.Application.ActiveDocument.BuiltInDocumentProperties.Parent.Name

= The objects Window and Selection include the object pointer to the document which belongs to them:

A}

Access the active document through the active document window
MsgBox tm.Application.ActiveWindow.Document.Name

ﬂ Properties, objects, collections and methods

Properties:

= Name R/O

* FullName R/O

= Path R/O

= PageCount R/O

= Saved

= ReadOnly

= EnableCaretMovement
= MergeFileName
= MergeFileFormat
= MergeFileHeader
= MergeRecord

Objects:
= PageSetup — PageSetup

BasicMaker and TextMaker

= Selection — Selection
= ActiveWindow — Window
= Application — Application
= Parent — Documents

Collections:

= BuiltinDocumentProperties — DocumentProperties
= Paragraphs — Paragraphs

= Tables — Tables

* FormFields > FormFields

Methods:

= Activate

= Close

= Save

= SaveAs

= Select

= MailMerge

= PrintOut

= MergePrintOut

Name (property, R/0)

Data type: String

Returns the name of the document (e.g. "Smith.tmdx").

FullName (property, R/0)
Data type: String

Returns the path and name of the document (e.g. "c:\Letters\Smith.tmdx").

Path (property, R/0)
Data type: String

Returns the path of the document (e.g. "c:\Letters").

PageCount (property, R/0)
Data type: Long

Returns the number of pages in the document.

Saved (property)

Data type: Boolean

BasicMaker and TextMaker

Gets or sets the Saved property of the document. It indicates whether a document was changed since it was last
saved:

= If Saved is set to True, the document was not changed since it was last saved.

= If Saved is set to False, the document was changed since it was last saved. When closing the document, the
user will be asked if it should be saved.

Note: As soon as the user changes something in a document, its Saved property will be set to False
automatically.

ReadOnly (property)
Data type: Boolean
Gets or sets the ReadOnly property of the document.

If the property is True, the document is protected against user changes. Users will not be able to edit, delete or
add content.

If you set this property to True, the EnableCaretMovement property (see there) will be automatically set to
False. Therefore, the text cursor cannot be moved inside the document anymore. However, you can always set
the EnableCaretMovement property to True if you want to make cursor movement possible.

EnableCaretMovement (property)
Data type: Boolean

Gets or sets the EnableCaretMovement property of the document. This property is sensible only in
combination with the ReadOnly property (see there).

If EnableCaretMovement is True, the text cursor can be moved freely inside a write-protected document. If it
is set to False, cursor movement is not possible.

MergeFileName (property)
Data type: String

Gets or sets the name of the merge database to which the document is assigned.

MergeFileFormat (property)

Data type: Long (TmMergeType)

Gets or sets the file format of the merge database to which the document is assigned. The possible values are:

tmMergeCSVAnsi = 3
tmMergeDBaseAnsi = 5
tmMergeCSVDos = 64
tmMergeDBaseDos = 66
tmMergeDBaseUnicode = 69

BasicMaker and TextMaker

MergeFileHeader (property)

Data type: Boolean

Gets or sets the option Use 1st record for field names. (In TextMaker, you will find this option in the dialog
box of the ribbon command Mailings | Recipients group | Select database | Use existing database.)

This property is applicable only for the CSV files (tmMergeCSV Ansi, tmMergeCSVDos).

MergeRecord (property)
Data type: Long

Gets or sets the record number of the record shown in a merge document. Corresponds to the setting Show
merge record on the View tab in the dialog box of the ribbon command File | Properties.

PageSetup (pointer to object)

Data type: Object

Returns the PageSetup object that you can use to access the page formatting of the document (paper format,
margins, etc.).

Selection (pointer to object)

Data type: Object

Returns the Selection object that lets you access the currently selected text of the document. If nothing is
selected, the object returns the current text cursor.

ActiveWindow (pointer to object)

Data type: Object

Returns the Window object that contains settings related to the document window of a document (for example,
its height and width on the screen).

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.c. Documents.

BasicMaker and TextMaker

BuiltinDocumentProperties (pointer to collection)

Data type: Object

Returns the DocumentProperties collection that you can use to access the document infos (title, subject,
author, etc.).

Paragraphs (pointer to collection)
Data type: Object

Returns the Paragraphs collection, a collection of all paragraphs in the document.

Tables (pointer to collection)

Data type: Object

Returns the Tables collection, a collection of all tables in the document.

FormFields (pointer to collection)
Data type: Object

Returns the FormFields collection, a collection of all form objects in the document.

Activate (method)

Brings the document window to the front (if Visible is True for the document) and sets the focus to the
document window.

Syntax:
Activate
Parameters:
none
Return type:
none

Example:

' Bring the first document of the Documents collection to the front
tm.Documents (1) .Activate

Close (method)

Closes the document.

BasicMaker and TextMaker

Syntax:
Close [SaveChanges]
Parameters:

SaveChanges (optional; type: Long or SmoSaveOptions) indicates whether the document should be
saved or not. If you omit this parameter, the user will be asked — but only if the document was changed
since it was last saved. The possible values for SaveChanges are:

smoDoNotSaveChanges = 0 ' Don't ask, don't save
smoPromptToSaveChanges = 1 ' Ask the user
smoSaveChanges = 2 ' Save without asking
Return type:
none
Example:

' Close the active document without saving
tm.ActiveDocument.Close smoDoNotSaveChanges

Save (method)

Saves the document.

Syntax:

Save
Parameters:

none
Return type:

none

Example:

' Save the active document
tm.ActiveDocument .Save

SaveAs (method)
Saves the document under a different name and/or path.

Syntax:

SaveAs FileName, [FileFormat]
Parameters:
FileName (type: String): Path and file name under which the document should be saved.

FileFormat (optional; type: Long or TmSaveFormat) determines the file format. This parameter can
take the following values (left: the symbolic constants, right: the corresponding numeric values):

BasicMaker and TextMaker

tmFormatDocument = 0 ' TextMaker document

tmFormatTemplate = 1 ' TextMaker document template
tmFormatWinWord97 = 2 ' Microsoft Word 97 and 2000
tmFormatOpenDocument = 3 ' OpenDocument, OpenOffice.org, StarOffice
tmFormatRTF = 4 ' Rich Text Format

tmFormatPocketWordPPC = 5 ' Pocket Word for Pocket PCs
tmFormatPocketWordHPC = 6 ' Pocket Word for Handheld PCs (Windows CE)
tmFormatPlainTextAnsi = 7 ' Text file with Windows character set
tmFormatPlainTextDOS = 8 ' Text file with DOS character set
tmFormatPlainTextUnicode = 9 ' Text file with Unicode character set

tmFormatPlainTextUTF8 = 10 ' Text file with UTF8 character set
tmFormatHTML 12 ' HTML document

tmFormatWinWord6 13 ' Microsoft Word 6.0
tmFormatPlainTextUnix = 14 ' Text file for UNIX, Linux, FreeBSD
tmFormatWinWordXP 15 ' Microsoft Word XP and 2003
tmFormatTM2006 16 ' TextMaker 2006 document
tmFormatOpenXML = 17 ' Microsoft Word 2007 and later

tmFormatTM2008 = 18 ' TextMaker 2008 document

tmFormatOpenXMLTemplate = 22 ' Microsoft Word document template 2007 and
later

tmFormatWinWordXPTemplate = 23 ' Microsoft Word document template XP and 2003

tmFormatTM2012 = 27 ' TextMaker 2012 document

tmFormatTM2016 = 28 ' TextMaker 2016 document

tmFormatTM2016Template 29 ' TextMaker 2016 document template
If you omit this parameter, the value tmFormatDocument will be assumed.

Return type:
none

Example:

' Save the current document under the given name in RTF format
tm.ActiveDocument.SaveAs "c:\docs\test.rtf", tmFormatRTF

Select (method)

Selects the entire document.
Syntax:
Select
Parameters:
none
Return type:
none

Example:

' Select the current document
tm.ActiveDocument.Select

BasicMaker and TextMaker

You can then use the Selection object to change, for example, the text formatting or to copy the selected text to
the clipboard.

PrintOut (method)

Prints the document on the currently selected printer.
Syntax:

PrintOut [From], [To]
Parameters:

From (optional; type: Long) indicates from which page to start. If omitted, printing starts from the first
page.

To (optional; type: Long) indicates at which page to stop. If omitted, printing stops at the last page.
Return type:
Boolean (True if printing was successful)

Example:

' Print out the pages 2-5 from the current document
tm.ActiveDocument.PrintOut 2, 5

MailMerge (method)

Transfers database fields from the assigned database into the document, using the record number specified in
the dialog box of the ribbon command File | Properties.

Syntax:

MailMerge Options, [ReplaceFields]
Parameters:

Options (type: Long or TmMergeOption) indicates what kind of data will be merged. The possible
values are:

tmSingleFax
tmSingleAddress
tmMultipleFax
tmMultipleAddress

DS w N

ReplaceFields (optional; type: Boolean) determines whether the database fields in the document should
be physically replaced by the corresponding field contents. The default value is False.

Return type:
none

Example:

' Insert record #5 from the assigned database into the document
tm.ActiveDocument.MergeRecord = 5

BasicMaker and TextMaker

tm.ActiveDocument.MailMerge tmSingleAddress, True

MergePrintOut (method)
Prints the document on the currently chosen printer as a merge document.
Syntax:
MergePrintOut [From], [To]
Parameters:

From (optional; type: Long) indicates the number of the first record to be printed. If omitted, printing
starts with the first record.

To (optional; type: Long) indicates the number of the last record to be printed. If omitted, printing stops
at the last record.

Return type:
Boolean (True if printing was successful)

Example:

' Print the current merge document, records 99 through 105
tm.ActiveDocument .MergePrintOut 99, 105

DocumentProperties (collection)

Access paths:
= Application > Documents = Item - DocumentProperties
= Application = ActiveDocument = DocumentProperties

n Description

The DocumentProperties collection contains all document properties of a document. This includes the title,
the author, the number of words, etc.

The individual elements of this collection are of the type DocumentProperty.

ﬂ Access to the collection

Each open document has exactly one DocumentProperties collection. It is accessed through
Document.BuiltinDocumentProperties:

' Set the title of the active document to "My Story"
tm.ActiveDocument.BuiltInDocumentProperties (smoPropertyTitle) = "My story"

' Show the number of words of the active document
MsgBox tm.ActiveDocument.BuiltInDocumentProperties ("Number of words")

BasicMaker and TextMaker

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — DocumentProperty (default object)
= Application — Application

= Parent - Document

Count (property, R/0)
Data type: Long

Returns the number of DocumentProperty objects in the collection, i.e. the number of document properties of
a document. This value is immutable, because all TextMaker documents have the same number of document
properties.

Item (pointer to object)

Data type: Object

Returns an individual DocumentProperty object, i.e. an individual document property.

Which DocumentProperty object you get depends on the parameter that you pass to Item. You can specify
either the numeric index or the name of the desired document property.

The following table contains the possible numeric values and the names associated to them:

smoPropertyTitle = 1 ' "Title"

smoPropertySubject = 2 ' "Subject"

smoPropertyAuthor = 3 ' "Author"

smoPropertyKeywords 4 ' "Keywords"

smoPropertyComments = 5 ' "Comments"

smoPropertyAppName = 6 ' "Application name"
smoPropertyTimeLastPrinted 7 ' "Last print date"
smoPropertyTimeCreated = 8 ' "Creation date"
smoPropertyTimeLastSaved = 9 ' "Last save time"
smoPropertyKeystrokes 10 ' "Number of keystrokes"
smoPropertyCharacters = 11 ' "Number of characters"”
smoPropertyWords = 12 ' "Number of words"
smoPropertySentences 13 ' "Number of sentences"
smoPropertyParas = 14 ' "Number of paragraphs"
smoPropertyChapters = 15 ' "Number of chapters"
smoPropertySections 16 ' "Number of sections"
smoPropertyLines = 17 ' "Number of lines"
smoPropertyPages = 18 ' "Number of pages"
smoPropertyCells 19 ' n/a (not available in TextMaker)
smoPropertyTextCells = 20 ' n/a (not available in TextMaker)
smoPropertyNumericCells = 21 ' n/a (not available in TextMaker)
smoPropertyFormulaCells 22 ' n/a (not available in TextMaker)
smoPropertyNotes = 23 ' n/a (not available in TextMaker)
smoPropertySheets = 24 ' n/a (not available in TextMaker)

BasicMaker and TextMaker

smoPropertyCharts = 25 ' n/a (not available in TextMaker)
smoPropertyPictures = 26 ' "Number of pictures"
smoPropertyOLEObjects = 27 ' n/a (not available in TextMaker)
smoPropertyDrawings = 28 ' n/a (not available in TextMaker)
smoPropertyTextFrames = 29 ' "Number of text frames"
smoPropertyTables = 30 ' "Number of tables"
smoPropertyFootnotes = 31 ' "Number of footnotes"
smoPropertyAvgWordLength = 32 ' "Average word length"
smoPropertyAvgCharactersSentence = 33 ' "Average characters per sentence"
smoPropertyAvgWordsSentence = 34 ' "Average words per sentence"

This list specifies all document properties that exist in SoftMaker Office, including those that are not available
in TextMaker. The latter are marked as "not available in TextMaker".

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Document.

DocumentProperty (object)

Access paths:
= Application = Documents = Item = BuiltInDocumentProperties = Item
= Application = ActiveDocument = BuiltInDocumentProperties = Item

n Description

A DocumentProperty object represents one individual document property of a document, for example, the
title, the author, or the number of words in a document.

E Access to the object

The individual DocumentProperty objects can be accessed solely through enumerating the elements of the
collection DocumentProperties.

For each opened document, there is exactly one instance of the DocumentProperties collection, namely
BuiltiInDocumentProperties in the Document object:

' Set the title of the active document to "My Story"
tm.ActiveDocument.BuiltInDocumentProperties.Item(smoPropertyTitle) = "My story"

BasicMaker and TextMaker

ﬂ Properties, objects, collections and methods

Properties:

= Name R/O

* Value (default property)
* Valid

= Type

Objects:
= Application — Application
= Parent — BuiltInDocumentProperties

Name (property, R/0)
Data type: String

Returns the name of the document property. Examples:

' Show the name of the document property smoPropertyTitle, i.e. "Title"
MsgBox tm.ActiveDocument.BuiltInDocumentProperties.Item(smoPropertyTitle) .Name

' Show the name of the document property "Author", i.e. "Author"
MsgBox tm.ActiveDocument.BuiltInDocumentProperties.Item("Author") .Name

Value (property)
Data type: String
Gets or sets the content of a document property.

The following example assigns a value to the document property "Title" defined by the numeric constant
smoPropertyTitle and then reads its value again using the string constant "Title":

Sub Example ()
Dim tm as Object

Set tm = CreateObject ("TextMaker.Application")
tm.Documents.Add ' Add a new empty document

' Set the new title (using the numeric constant smoPropertyTitle)
tm.ActiveDocument .BuiltInDocumentProperties.Item(smoPropertyTitle) .Value =
"New title"

' Get the exact same property again (using the string this time)
MsgBox tm.ActiveDocument.BuiltInDocumentProperties.Item("Title") .Value

End Sub

Since Item is the default object of the DocumentProperties and Value is the default property of
DocumentProperty, the example can be written clearer in the following way:

Sub Example ()

BasicMaker and TextMaker

Dim tm as Object

Set tm = CreateObject ("TextMaker.Application")
tm.Documents.Add ' Add a new empty document

' Set the new title (using the numeric constant smoPropertyTitle)
tm.ActiveDocument .BuiltInDocumentProperties (smoPropertyTitle) = "New title"

' Get the exact same property again (using the string this time)
MsgBox tm.ActiveDocument.BuiltInDocumentProperties ("Title")

End Sub

Valid (property, R/0)
Data type: Boolean
Returns True if the document property is available in TextMaker.

Background: The list of document properties also contains items that are available only in PlanMaker (for
example, smoPropertySheets, "Number of sheets"). When working with TextMaker, you can retrieve only
those document properties that are known to this program — otherwise an empty value will be returned
(VT_EMPTY).

The Valid property allows you to test whether the respective document property is available in TextMaker
before using it. Example:

Sub Main ()
Dim tm as Object
Dim i as Integer
Set tm = CreateObject ("TextMaker.Application")

tm.Visible = True
tm.Documents.Add ' Add an empty document

With tm.ActiveDocument

For i = 1 to .BuiltInDocumentProperties.Count
If .BuiltInDocumentProperties (i) .Valid then
Print i, .BuiltInDocumentProperties(i) .Name, "=",
.BuiltInDocumentProperties (i) .Value
Else
Print i, "Not available in TextMaker"
End If
Next i
End With
End Sub
Type (property, R/0)

Data type: Long (SmoDocProperties)

Returns the data type of the document property. In order to evaluate a document property correctly, you must
know its type. For example, Title (smoPropertyTitle) is a string value, whereas Creation Date
(smoPropertyTimeCreated) is a date. The possible values are:

BasicMaker and TextMaker

smoPropertyTypeBoolean 0 ' Boolean
smoPropertyTypeDate = 1 ' Date
smoPropertyTypeFloat = 2 ' Floating-point number
smoPropertyTypeNumber = 3 ' Integer number
smoPropertyTypeString = 4 ' String

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. BuiltInDocumentProperties.

PageSetup (object)

Access paths:
= Application = Documents = Item -> PageSetup
= Application > ActiveDocument - PageSetup

n Description

The PageSetup object contains the page settings of the Document object to which it belongs. You can use it to
determine and change the paper size, page size and margins as well as the orientation of a document.

E Access to the object

Each open document has exactly one instance of the PageSetup object. It is accessed through
Document.PageSetup:

' Set the left margin of the page to 2cm
tm.ActiveDocument .PageSetup.LeftMargin = tm.CentimetersToPoints (2)

Note: TextMaker allows you to divide a document into multiple chapters and then define different page settings

for each of them. In this case, the PageSetup object always refers to the page settings of the chapter where the
text cursor is placed at the moment.

ﬂ Properties, objects, collections and methods

Properties:

BasicMaker and TextMaker

= LeftMargin

= RightMargin
= TopMargin

= BottomMargin
= PageHeight

= PageWidth

= QOrientation

= PaperSize

Objects:
= Application — Application
= Parent - Document

LeftMargin (property)
Data type: Single

Gets or sets the left page margin of the document in points (1 point corresponds to 1/72 inches).

RightMargin (property)
Data type: Single

Gets or sets the right page margin of the document in points (1 point corresponds to 1/72 inches).

TopMargin (property)
Data type: Single

Gets or sets the top page margin of the document in points (1 point corresponds to 1/72 inches).

BottomMargin (property)
Data type: Single

Gets or sets the bottom page margin of the document in points (1 point corresponds to 1/72 inches).

PageHeight (property)
Data type: Single
Gets or sets the page height of the document in points (1 point corresponds to 1/72 inches).

If you set this property, the PaperSize property (see below) will be automatically changed to a suitable paper
format.

PageWidth (property)

Data type: Single

BasicMaker and TextMaker

Gets or sets the page width of the document in points (1 point corresponds to 1/72 inches).

If you set this property, the PaperSize property (see below) will be automatically changed to a suitable paper
format.

Orientation (property)
Data type: Long (SmoOrientation)

Gets or sets the page orientation. The following constants are allowed:

smoOrientLandscape = 0 ' Landscape orientation
smoOrientPortrait = 1 ' Portrait orientation

PaperSize (property)
Data type: Long (SmoPaperSize)

Gets or sets the page size of the document. The following constants are allowed:

smoPaperCustom = -1
smoPaperLetter =1

smoPaperLetterSmall = 2

smoPaperTabloid =3

smoPaperLedger = 4

smoPaperlLegal =5

smoPaperStatement = 6

smoPaperExecutive = 7

smoPaperA3 = 8

smoPaperA4 = 9

smoPaperA4Small =10
smoPaperA5 = 11
smoPaperB4 =12
smoPaperB5 = 13
smoPaperFolio = 14
smoPaperQuarto = 15
smoPaperl0x14 =16
smoPaperllxl7 = 17
smoPaperNote = 18
smoPaperEnvelope9 =19
smoPaperEnvelopelO = 20
smoPaperEnvelopell = 21
smoPaperEnvelopel2 = 22
smoPaperEnvelopel4 = 23
smoPaperCSheet = 24
smoPaperDSheet = 25
smoPaperESheet = 26
smoPaperEnvelopeDL = 27
smoPaperEnvelopeC5 = 28
smoPaperEnvelopeC3 = 29
smoPaperEnvelopeC4 = 30
smoPaperEnvelopeC6 = 31
smoPaperEnvelopeC65 = 32
smoPaperEnvelopeB4 = 33
smoPaperEnvelopeB5 = 34

BasicMaker and TextMaker

smoPaperEnvelopeB6 = 35
smoPaperEnvelopeItaly = 36
smoPaperEnvelopeMonarch = 37
smoPaperEnvelopePersonal = 38
smoPaperFanfoldUS = 39
smoPaperFanfoldStdGerman = 40
smoPaperFanfoldLegalGerman = 41

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Document.

Selection (object)

Access paths:
= Application = Documents = Item = Selection
= Application = ActiveDocument = Selection

ﬂ Description

Selection represents the current selection in a document.

If text is selected, the Selection object represents the contents of this selection. If nothing is selected, the
Selection object represents the current cursor position. If you add text (for example, with the method
Selection.TypeText), the contents of the selected area will be replaced with this text. If nothing was selected,
the text will be pasted at the current cursor position.

You can use the Font object accessible from Selection to make changes in the text formatting. Example:
tmActiveDocumentSelectionFontSize = 24 changes the font size for the text selected in the active document
to 24 points.

ﬂ Access to the object

Each open document has exactly one instance of the Selection object. It can be accessed through
Document.Selection:

' Copy the selection from the current document to the clipboard
tm.ActiveDocument.Selection.Copy

BasicMaker and TextMaker

ﬂ Properties, objects, collections and methods

Objects:

* Document — Document

* Font —> Font

= Application — Application
= Parent - Document

Methods:

= Copy

= Cut

= Paste

= Delete

= TypeText

= TypeParagraph
= TypeBackspace
= InsertBreak

= GoTo

= ConvertToTable
= SetRange

= InsertPicture

Document (pointer to object)

Data type: Object

Returns the Document object which belongs to the current selection.

Font (pointer to object)
Data type: Object

Returns the Font object which belongs to the current selection. It contains properties for reading and changing
the character formatting in the selection.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Document.

BasicMaker and TextMaker

Copy (method)
Copies the content of the selection to the clipboard.
Syntax:
Copy
Parameters:
none
Return type:
none
Example:

Copy the active selection to the clipboard
tm.ActiveDocument.Selection.Copy

Cut (method)
Cuts the content of the selection and places it in the clipboard.
Syntax:
Cut
Parameters:
none
Return type:
none
Example:

Cut the current selection and place it in the clipboard
tm.ActiveDocument.Selection.Cut

Paste (method)

Pastes the content of the clipboard into the selection.
Syntax:
Paste
Parameters:
none

Return type:

BasicMaker and TextMaker

none
Example:
A}

tm.ActiveDocument.Selection.Paste

Delete (method)
Deletes the content of the selection.
Syntax:
Delete
Parameters:
none
Return type:
none
Example:

Delete the active selection
tm.ActiveDocument.Selection.Delete

TypeText (method)

Insert a string into the selection.

Syntax:

TypeText Text

Parameters:

Text (type: String) is the string to be inserted.
Return type:
none

Example:

A}

Replace the active selection with the contents of the clipboard

Insert text at the current cursor position in the active document

tm.ActiveDocument.Selection.TypeText "Programming with BasicMaker"

TypeParagraph (method)

Insert a carriage return character (CR) into the selection.
Syntax:

TypeParagraph

BasicMaker and TextMaker

Parameters:
none

Return type:
none

Example:

' Insert a carriage rueturn at the current cursor position in the active document

tm.ActiveDocument.Selection.TypeParagraph

TypeBackspace (method)
Insert a backspace character.
Syntax:

TypeBackspace
Parameters:

none
Return type:

none

Example:

A}

Execute a backspace at the current cursor position in the active document
tm.ActiveDocument.Selection.TypeBackspace

InsertBreak (method)

Inserts a manual break.

Syntax:

InsertBreak [Type]
Parameters:

Type (optional; type: Long or TmBreakType) defines the type of the break. The possible values are:

tmLineBreak 0 ' Line break
tmColumnBreak = 1 ' Column break
tmSectionBreak = 2 ' Section break
tmPageBreak = 3 ' Page break
tmChapterBreak = 4 ' Chapter break

If you omit the Type parameter, the value tmPageBreak will be assumed.
Return type:

none

BasicMaker and TextMaker

Example:

' Insert a page break at the current cursor position
tm.ActiveDocument.Selection.InsertBreak tmPageBreak

GoTo (method)

Moves the text cursor to the specified position.
Syntax:

GoTo [What], [Which], [Count], [NumRow], [NumCol]
Parameters:

What (optional; type: Long or TmGoToltem) indicates whether the destination is a table or a

paragraph:
tmGoToParagraph =1 ' Paragraph
tmGoToTable = 2 ' Table

If you omit the What parameter, the value tmGoToParagraph will be assumed.

Which (optional; type: Long or TmGoToDirection) indicates whether the movement should be absolute
or relative to the current position:

tmGoToAbsolute = 1 ' absolute
tmGoToRelative = 2 ' relative

If you omit the Which parameter, the value tmGoToAbsolute will be assumed.

Count (optional; type: Long) indicates the number of the item (i.e. the index of the table or the index of
the paragraph in the document) that should be accessed.

If you omit the Count parameter, the value 1 will be assumed.

NumRow (optional; type: Long): If What is set to tmGoToTable, this parameter optionally allows you
to specify into which line of the table the cursor should be moved.

NumCol (optional; type: Long): If What is set to tmGoToTable, this parameter optionally allows you
to specify into which row of the table the cursor should be moved.

Return type:
none

Examples:

' Move the cursor to the fourth paragraph
tm.ActiveDocument.Selection.GoTo tmGoToParagraph, tmGoToAbsolute, 4

' Move the cursor to the previous paragraph
tm.ActiveDocument.Selection.GoTo tmGoToParagraph, tmGoToRelative, -1

' Move the cursor to the first line of the first table
tm.ActiveDocument.Selection.GoTo tmGoToTable, tmGoToAbsolute, 1, 1, 1

BasicMaker and TextMaker

ConvertToTable (method)

Converts the selected text to a table.

Syntax:
ConvertToTable [NumRows], [NumCols], [Separator], [RemoveQuotationMarks],
[RemoveSpaces]

Parameters:

NumRows (optional; type: Long) indicates how many rows the table should have. If omitted, TextMaker
will calculate the number of lines by itself.

NumCols (optional; type: Long) indicates how many columns the table should have. If omitted,
TextMaker will calculate the number of columns by itself.

Separator (optional; type: either String or Long or TmTableFieldSeparator) specifies one or more
characters that TextMaker should use to recognize the columns. You can provide either a string or one of
the following constants:

tmSeparateByCommas = 0 ' Columns separated by commas
tmSeparateByParagraphs = 1 ' Columns separated by paragraphs
tmSeparateByTabs = 2 ' Columns separated by tabs
tmSeparateBySemicolons = 3 ' Columns separated by semicolons

If you omit this parameter, the value tmSeparateByTabs will be assumed.

RemoveQuotationMarks (optional; type: Boolean): Set this parameter to True, if TextMaker should
delete all leading and trailing quotation marks from the entries. If you omit this parameter, the value
False will be assumed.

RemoveSpaces (optional; type: Boolean): Set this parameter to True, if TextMaker should delete all
leading and trailing space characters from the entries. If you omit this parameter, the value True will be
assumed.

Return type:
Object (a Table object which represents the new table)

Examples:

' Convert the current selection to a table. The column separator is the comma.
tm.ActiveDocument.Selection.ConvertToTable Separator := tmSeparateByCommas

' Here, slashes are used as the separator:
tm.ActiveDocument.Selection.ConvertToTable Separator := "/"

SetRange (method)
Sets the start and end point of the selection by specifying their character positions.

Syntax:

SetRange Start, End

Parameters:

BasicMaker and TextMaker

Start (type: Long) sets the start position of the new selection, specified as the number of characters from
the document beginning.

End (type: Long) sets the end position of the new selection, specified as the number of characters from
the document beginning,.

Return type:
none

Examples:

A}

Select from character 1 to character 4 of the active document
tm.ActiveDocument.Selection.SetRange 1, 4

Tip: You can also use this method to select whole paragraphs. For this purpose, use the
Paragraph.Range.Start and Paragraph.Range.End values to indicate the start and end position of the
paragraph and pass them to the SetRange method.

InsertPicture (method)
Insert a picture from a file into the selection.

Syntax:

InsertPicture PictureName
Parameters:

PictureName (type: String) is the path and file name of the picture to be inserted.
Return type:

none

Examples:

A}

Insert a picture at the current position
tm.ActiveDocument.Selection.InsertPicture "c:\Pictures\Fish.bmp"

Font (object)

Access paths:
= Application = Documents = Item = Selection = Font
= Application = ActiveDocument = Selection = Font

BasicMaker and TextMaker

n Description

The Font object describes the character formatting of a text fragment. It is a child object of Selection and
allows you to get and set all character attributes of the current selection.

E Access to the object

Each open document has exactly one instance of the Font object. It is accessed through
Document.Selection.Font:

' Assign the Arial font to the current selection
tm.ActiveDocument.Selection.Font.Name = "Arial"

B Properties, objects, collections and methods

Properties:

= Name (default property)
Size

Bold

Italic

Underline
StrikeThrough
Superscript
Subscript

AllCaps

SmallCaps
PreferredSmallCaps
Blink

Color

ColorIndex

BColor
BColorIndex
Spacing

Pitch

Objects:
= Application — Application
= Parent — Selection

Name (property)
Data type: String
Gets or sets the font name (as a string).

If multiple fonts are used inside the selection, an empty string will be returned.

BasicMaker and TextMaker

Size (property)
Data type: Single
Gets or sets the font size in points (pt).

If multiple font sizes are used inside the selection, the constant smoUndefined (9,999,999) will be returned.

Example:

' Set the size of the selected text to 10.3 pt
tm.ActiveDocument.Selection.Font.Size = 10.3

Bold (property)
Data type: Long

Gets or sets the character formatting "Bold":

* True: Bold on

= False: Bold off

= smoToggle (only when setting): The current state is reversed.

= smoUndefined (only when reading): The selection is partly bold and partly not.

Italic (property)
Data type: Long

Gets or sets the character formatting "Italic":

= True: Italic on

= False: Italic off

= smoToggle (only when setting): The current state is reversed.

= smoUndefined (only when reading): The selection is partly italic and partly not.

Underline (property)
Data type: Long (TmUnderline)

Gets or sets the character formatting "Underline". The following values are allowed:

tmUnderlineNone = 0 ' off

tmUnderlineSingle = 1 ' single underline
tmUnderlineDouble = 2 ' double underline
tmUnderlineWords = 3 ' word underline
tmUnderlineWordsDouble = 4 ' double word underline

BasicMaker and TextMaker

If you are reading this property and the selection is partly underlined and partly not, the constant
smoUndefined will be returned.

StrikeThrough (property)
Data type: Long
Gets or sets the character formatting "Strikethrough":
= True: Strikethrough on
= False: Strikethrough off
= smoToggle (only when setting): The current state is reversed.

= smoUndefined (only when reading): The selection is partly struck through and partly not.

Superscript (property)
Data type: Long
Gets or sets the character formatting "Superscript":
= True: Superscript on
= False: Superscript off
= smoToggle (only when setting): The current state is reversed.

= smoUndefined (only when reading): The selection is partly superscripted and partly not.

Subscript (property)
Data type: Long
Gets or sets the character formatting "Subscript":

= True: Subscript on

= False: Subscript off

= smoToggle (only when setting): The current state is reversed.

= smoUndefined (only when reading): The selection is partly subscripted and partly not.

AliCaps (property)
Data type: Long

Gets or sets the character formatting "All caps":
= True: All caps on

= False: All caps off

BasicMaker and TextMaker

= smoToggle (only when setting): The current state is reversed.

= smoUndefined (only when reading): The selection is partly in all caps and partly not.

SmallCaps (property)
Data type: Long
Gets or sets the character formatting "Small caps":
= True: Small caps on
= False: Small caps off
= smoToggle (only when setting): The current state is reversed.

= smoUndefined (only when reading): The selection is partly in small caps and partly not.

PreferredSmallCaps (property)

Data type: Long

Gets or sets the character formatting "Small caps", but as opposed to the SmallCaps property, lets you choose
the scaling factor. The value 0 turns small caps off, all other values represent the percentual scaling factor of

the small capitals.
Example:

' Format the selected text in small capitals at 75% size

tm.ActiveDocument.Selection.Font.PreferredSmallCaps = 75

' Deactivate small caps again
tm.ActiveDocument.Selection.Font.PreferredSmallCaps = O

Blink (property)
Data type: Long
Gets or sets the character formatting "Blink" (obsolete):
* True: Blink on
= False: Blink off
= smoToggle (only when setting): The current state is reversed.

= smoUndefined (only when reading): The selection is partly blinking and partly not.

Color (property)
Data type: Long (SmoColor)

Gets or sets the foreground color of text as a "BGR" value (Blue-Green-Red triplet). You can either provide an
arbitrary value or use one of the pre-defined BGR color constants.

BasicMaker and TextMaker

If the selection is formatted in different colors, the constant smoUndefined will be returned when you read this
property.

Colorindex (property)
Data type: Long (SmoColorIndex)

Gets or sets the foreground color of text using an index color. "Index colors" are the 16 standard colors of
TextMaker, numbered from 0 for black to 15 for light gray. You may use the values shown in the Index colors
table.

If the selection is formatted in different colors or in a color that is not an index color, the constant
smoUndefined will be returned when you read this property.

Note: It is recommended to use the Color property (see above) instead of this one, since it is not limited to the
16 standard colors but enables you to access the entire BGR color palette.

BColor (property)

Data type: Long (SmoColor)

Gets or sets the background color of text as a "BGR" value (Blue-Green-Red triplet). You can either provide an
arbitrary value or use one of the pre-defined BGR color constants.

If the selection is formatted in different colors, the constant smoUndefined will be returned when you read this
property.

BColorindex (property)

Data type: Long (SmoColorIndex)

Gets or sets the background color of text using an index color. "Index colors" are the 16 standard colors of
TextMaker, numbered from -1 for transparent to 15 for light gray. You may use the values shown in the Index
colors table.

If the selection is formatted in different colors or in a color that is not an index color, the constant
smoUndefined will be returned when you read this property.

Note: It is recommended to use the BColor property (see above) instead of this one, since it is not limited to the
standard colors but enables you to access the entire BGR color palette.

Spacing (property)
Data type: Long
Gets or sets the character spacing. The standard value is 100 (normal character spacing of 100%).

If you read this property and the selection is formatted in different character spacings, the constant
smoUndefined will be returned.

BasicMaker and TextMaker

Pitch (property)
Data type: Long
Gets or sets the character pitch. The standard value is 100 (normal character pitch of 100%).

If you read this property and the selection is formatted in different character pitches, the constant
smoUndefined will be returned.

Note that some printers ignore changes to the character pitch for their internal fonts.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Document.

Paragraphs (collection)

Access paths:
= Application = Documents = Item - Paragraphs
= Application = ActiveDocument - Paragraphs

n Description

Paragraphs is a collection of all paragraphs in a document. The individual elements of this collection are of
the type Paragraph.

E Access to the collection

Each open document has exactly one instance of the Paragraphs collection. It is accessed through
Document.Paragraphs:

' Show the number of paragraphs in the current document
MsgBox tm.ActiveDocument.Paragraphs.Count

BasicMaker and TextMaker

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Item — Paragraph (default object)
= Application — Application

= Parent - Document

Count (property, R/0)
Data type: Long

Returns the number of Paragraph objects in the document — in other words: the number of paragraphs in the
document.

Item (pointer to object)
Data type: Object
Returns an individual Paragraph object, i.e. an individual paragraph.

Which Paragraph object you get depends on the numeric value that you pass to Item: 1 for the first paragraph in
the document, 2 for the second, etc.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Document.

Paragraph (object)

Access paths:
= Application = Documents = Item = Paragraphs = Item
= Application = ActiveDocument = Paragraphs = Item

BasicMaker and TextMaker

n Description

A Paragraph object represents one individual paragraph of the document and allows you to change its
formatting.

An individual Paragraph object exists for each paragraph. If you add paragraphs to a document or delete them,
the respective Paragraph objects will be created or deleted dynamically.

ﬂ Access to the object

The individual Paragraph objects can be accessed solely through enumerating the elements of the collection
Paragraphs. Each document has exactly one instance of this collection.

An example:

' Set alignment to "justified" for the first paragraph
tm.ActiveDocument.Paragraphs.Item (1) .Alignment = tmAlignParagraphdustify

' The same using an auxiliary object

Dim paragr as Object

Set paragr = tm.ActiveDocument.Paragraphs.Item (1)
paragr.Alignment = tmAlignParagraphJdustify

Set paragr = Nothing ' Delete the auxiliary object again

ﬂ Properties, objects, collections and methods

Properties:

* BorderBounds

= FirstLineIndent

= LeftIndent

= RightIndent

= LineSpacingRule

= LineSpacing

= PreferredLineSpacing
= SpaceBefore

= SpaceAfter

= Alignment

= Hyphenation

= QutlineLevel

= PageBreakBefore

= ColumnBreakBefore
= KeepWithNext

= KeepTogether

= WidowControl

= BorderClearance

Objects:

= Shading — Shading

* DropCap — DropCap
= Range — Range

BasicMaker and TextMaker

= Application — Application
= Parent — Paragraphs

Collections:
= Borders — Borders

BorderBounds (property)

Data type: Long (TmBorderBounds)

Gets or sets the spacing between the paragraph borders and the paragraph itself. The possible values are:

tmBoundsPage = 0 ' Borders extend to the page margins
tmBoundsIndents = 1 ' Borders extend to the paragraph margins
tmBoundsText = 2 ' Borders extend to the paragraph text

FirstLinelndent (property)
Data type: Single

Gets or sets the first line indent of the paragraph in points (1 point corresponds to 1/72 inches).

Leftindent (property)
Data type: Single

Gets or sets the left indent of the paragraph in points (1 point corresponds to 1/72 inches).

Rightindent (property)
Data type: Single

Gets or sets the right indent of the paragraph in points (1 point corresponds to 1/72 inches).

LineSpacingRule (property)
Data type: Long (TmLineSpacing)

Gets or sets the way in which the line spacing of the paragraph is performed. The possible values are:

tmLineSpaceAuto = 0 ' Automatically (in percent)
tmLineSpaceExactly = 1 ' Exactly (in points)
tmLineSpaceAtLeast = 2 ' At least (in points)
LineSpacing (property)

Data type: Single

Gets or sets the line spacing of the paragraph.

BasicMaker and TextMaker

Unlike the property PreferredLineSpacing (see below), the line spacing mode (see LineSpacingRule) is
ignored here — the line spacing will be always specified in points and normalized to a standard font size of 12

points.

In other words: No matter if the line spacing is set to "Automatically 100%", to "Exactly 12 pt" or to "At least
12 points", this property will always return the result 12.

PreferredLineSpacing (property)

Data type: Single
Gets or sets the line spacing of the paragraph.

This property returns and expects values dependent on the chosen line spacing mode (see LineSpacingRule):
= tmLineSpaceAuto: The values are expressed in percent. For example, 100 represents 100% line spacing.
= tmLineSpaceExactly: The values are absolute values in points.

* tmLineSpaceAtLeast: The values are absolute values in points.

Example:

' Set the line spacing to "Automatic 150%"
tm.ActiveDocument.Paragraphs (1) .LineSpacingRule = LineSpacingAuto
tm.ActiveDocument.Paragraphs (1) . PreferredLineSpacing = 150

SpaceBefore (property)
Data type: Single

Gets or sets the space above the paragraph in points (1 point corresponds to 1/72 inches).

SpaceAfter (property)

Data type: Single

Gets or sets the space below the paragraph in points (1 point corresponds to 1/72 inches).

Alignment (property)
Data type: Long (TmParagraphAlignment)

Gets or sets the alignment of the paragraph. The possible values are:

0 ' left aligned
1 ' right aligned
2 ' centered

3 ' justified

tmAlignParagraphlLeft
tmAlignParagraphRight
tmAlignParagraphCenter
tmAlignParagraphJustify

BasicMaker and TextMaker

Hyphenation (property)
Data type: Long (TmHyphenation)

Gets or sets the hyphenation mode. The possible values are:

tmHypenationNone =
tmHypenationAlways =
tmHypenationEvery2Lines =
tmHypenationEvery3Lines =

no hyphenation

hyphenate wherever possible
2-line hyphenation

3-line hyphenation

w NP O

OutlineLevel (property)

Data type: Long (TmOutlineLevel)

Gets or sets the outline level of the paragraph. The possible values are:

tmOutlinelLevelBodyText 0 ' Body text
tmOutlinelLevell =1 "' Level 1
tmOutlinelLevel2 = 2 ' Level 2
tmOutlinelevel3 = 3 ' Level 3
tmOutlinelLeveld = 4 ' Level 4
tmOutlinelevel5 = 5 ' Level 5
tmOutlinelevel6 = 6 ' Level 6
tmOutlinelLevel?7 =7 ' Level 7
tmOutlinelevel8 = 8 ' Level 8
tmOutlinelevel9 = 9 ' Level 9

PageBreakBefore (property)

Data type: Boolean

Gets or sets the "Page break" property of the paragraph (True or False).

ColumnBreakBefore (property)
Data type: Boolean

Gets or sets the "Column break" property of the paragraph (True or False).

KeepWithNext (property)
Data type: Boolean

Gets or sets the "Keep with next" property of the paragraph (True or False).

KeepTogether (property)

Data type: Boolean

BasicMaker and TextMaker

Gets or sets the "Keep together" property of the paragraph (True or False).

WidowControl (property)
Data type: Boolean

Gets or sets the "Avoid widows/orphans" property of the paragraph (True or False).

BorderClearance (property)

Gets or sets the spacing between the paragraph borders and the paragraph text. Each of the four sides can be
accessed individually.

Syntax 1 (setting a value):
BorderClearance (Index) = n
Syntax 2 (reading a value):
n = BorderClearance (Index)
Parameters:

Index (type: Long or TmBorderClearance) indicates which side of the paragraph should be accessed:

tmBorderClearanceleft
tmBorderClearanceRight =
tmBorderClearanceTop =
tmBorderClearanceBottom

DSw N

n (type: Single) identifies the spacing in points.
Return type:
Single

Examples:

' Set the spacing to the left border to 5 pt in the first paragraph
tm.ActiveDocument.Paragraphs (1) .BorderClearance (tmBorderClearanceleft) = 5

' Get the spacing to the left border in the first paragraph
MsgBox tm.ActiveDocument.Paragraphs (l) .BorderClearance (tmBorderClearanceleft)

Shading (pointer to object)

Data type: Object
Returns the Shading object that describes the shading of the paragraph.

DropCap (pointer to object)

Data type: Object

BasicMaker and TextMaker

Returns the DropCap object that describes the drop cap character of the paragraph.

Range (pointer to object)
Data type: Object

Returns the Range object that describes the start and end position of the paragraph calculated as the number of
characters from the top of the document.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object
Returns the parent object, i.e. an object of the type Paragraphs.

Borders (pointer to collection)

Data type: Object

Returns the Borders collection which represents the five border lines of the paragraph. You can use this
collection to retrieve and change the line settings (thickness, color, etc.).

Range (object)

Access paths:
= Application > Documents = Item - Paragraphs - Item - Range
= Application > ActiveDocument > Paragraphs = Item - Range

n Description

The Range object is a child object of the Paragraph object. It returns the start and end position of the
paragraph, expressed as the number of characters from the top of the document.

E Access to the object

For each Paragraph object there is exactly one Range object. This Range object can be accessed solely
through the object pointer Range in the associated Paragraph object:

BasicMaker and TextMaker

' Display the end position of the first paragraph in the active document
MsgBox tm.ActiveDocument.Paragraphs.Item(l) .Range.End

B Properties, objects, collections and methods

Properties:
= Start R/O
= End R/O

Objects:
= Application — Application
= Parent — Paragraph

Start (property, R/0)
Data type: Long

Returns the start position of the paragraph, expressed as the number of character from the top of the document.

End (property, R/0)

Data type: Long

Returns the end position of the paragraph, expressed as the number of characters from the top of the document.
An example for Start and End:

If the first paragraph of a document consists of the text "The first paragraph", the following applies:

* tm.ActiveDocument.Paragraphs.Item(1).Range.Start returns the value 0 ("the zeroth character from the
beginning of the document").

= tm.ActiveDocument.Paragraphs.Item(1).Range.End returns 20.

You can use these values to select a paragraph or a part of it:

' Select the first two characters of the first paragraph
tm.ActiveDocument.Selection.SetRange 0, 1

' Select the whole paragraph
With tm.ActiveDocument
.Selection.SetRange .Paragraphs(l) .Range.Start, .Paragraphs(l).Range.End

End With
You can select the first four paragraphs of a document as follows:

With tm.ActiveDocument
.Selection.SetRange .Paragraphs(l) .Range.Start, .Paragraphs(4).Range.End

End With

BasicMaker and TextMaker

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Paragraph.

DropCap (object)

Access paths:
= Application = Documents = Item - Paragraphs - Item - DropCap
= Application = ActiveDocument = Paragraphs = Item - DropCap

ﬂ Description

The DropCap object describes the drop-cap character of a paragraph. It is a child object of Paragraph and
allows you to get and set the properties of the drop-cap character.

ﬂ Access to the object

Each paragraph has exactly one instance of the DropCap object. It is accessed through the object pointer
DropCap in the Paragraph object:

' Activate a drop cap for the first paragraph
tm.ActiveDocument.Paragraphs (1) .DropCap.Position = tmDropNormal

A}

. and change the font of the drop-cap character
tm.ActiveDocument.Paragraphs (1) .DropCap.FontName = "Arial"

ﬂ Properties, objects, collections and methods

Properties:

= FontName

= Size

= Position

= LeftMargin

= RightMargin
= TopMargin

= BottomMargin

BasicMaker and TextMaker

Objects:
= Application — Application
= Parent — Paragraph

FontName (property)

Data type: String

Gets or sets the font name of the drop-cap character.

Size (property)
Data type: Single

Gets or sets the font size of the drop-cap character in points.

Position (property)
Data type: Long (TmDropPosition)

Gets or sets the mode in which the drop-cap character is positioned. The possible values are:

tmDropNone = 0 ' No drop caps

tmDropNormal = 1 ' In the paragraph
tmDropMargin = 2 ' To the left of the paragraph
tmDropBaseLine = 3 ' On the base line

LeftMargin (property)

Data type: Single

Gets or sets the left margin of the drop cap in points (1 point corresponds to 1/72 inches).

RightMargin (property)
Data type: Single

Gets or sets the right margin of the drop cap in points (1 point corresponds to 1/72 inches).

TopMargin (property)
Data type: Single

Gets or sets the top margin of the drop cap in points (1 point corresponds to 1/72 inches).

BottomMargin (property)
Data type: Single

BasicMaker and TextMaker

Gets or sets the bottom margin of the drop cap in points (1 point corresponds to 1/72 inches).

Application (pointer to object)
Data type: Object

Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Paragraph.

Tables (collection)

Access paths:
= Application = Documents = Item = Tables
= Application = ActiveDocument = Tables

n Description

Tables is a collection of all tables in a document. The individual elements of this collection are of the type
Table.

E Access to the collection

Each open document has exactly one instance of the Tables collection. It is accessed through
Document.Tables:

' Display the number of tables in the active document
MsgBox tm.ActiveDocument.Tables.Count

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Table (default object)
= Application — Application

* Parent - Document

Methods:

BasicMaker and TextMaker

= Add

Count (property, R/0)
Data type: Long

Returns the number of Table objects in the document — in other words: the number of the tables in the
document.

Item (pointer to object)
Data type: Object
Returns an individual Table object, i.e. an individual table.

Which Table object you get depends on the parameter that you pass to Item. You can specify either the numeric
index or the name of the desired table. Examples:

' Display the number of rows in the first table
MsgBox tm.Tables.Item(1l).Rows.Count

' Display the number of rows in the table names "Tablel"
MsgBox tm.Tables.Item("Tablel") .Rows.Count

Application (pointer to object)

Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Document.

Add (method)
Add a new table to the document at the current selection.
Syntax:
Add NumRows, NumColumns
Parameters:

NumRows (type: Long) defines the number of rows for the new table. If you specify a value of 0 or Iess,
the default value 3 will be used.

NumColumns (type: Long) defines the number of columns for the new table. If you specify a value of 0
or less, the default value 3 will be used.

Return type:

BasicMaker and TextMaker

Object (a Table object which represents the new table)

Examples:

' Add a 3*3 table to the document
tm.ActiveDocument.Tables.Add 3, 3
' The same, but working with the table as an object

Dim newTable as Object

Set newTable = tm.ActiveDocument.Tables.Add (3, 3)

MsgBox newTable.Rows.Count ' Display the number of table rows

Table (object)

Access paths:
= Application = Documents = Item = Tables = Item
= Application = ActiveDocument = Tables = Item

n Description

A Table object represents one individual table of the document and allows you to change its formatting.

An individual Table object exists for each table. If you add tables to a document or delete them, the respective
Table objects will be created or deleted dynamically.

ﬂ Access to the object

The individual Table objects can be accessed solely through enumerating the elements of the collection Tables.
Each document has exactly one instance of this collection.

An example:

' Convert the first table of the document to text
tm.ActiveDocument.Tables.Item(1l) .ConvertToText

B Properties, objects, collections and methods

Objects:

= Shading — Shading

= Cell > Cell

= Application — Application
= Parent — Tables

Collections:
= Rows — Rows
= Borders — Borders

BasicMaker and TextMaker

Methods:
= ConvertToText

Shading (pointer to object)

Data type: Object
Returns the Shading object belonging to the table which represents the shading of the entire table.

Cell (pointer to object)
Data type: Object
Returns a Cell object that represents a table cell identified by a row and a column.
Syntax:
Cell (Row, Column)
Parameters:
Row (type: Long) specifies the row of the cell within the table.

Column (type: Long) specifies the column of the cell within the table.

Examples:

' Set the vertical alignment of cell B3 in the first table to "vertically

centered"
With tm.ActiveDocument
.Tables (1) .Cell (2,3) .VerticalAlignment = tmCellVerticalAlignmentCenter

End With

' The same, but with a detour through the Rows collection

With tm.ActiveDocument
.Tables (1) .Rows (2) .Cells (3) .VerticalAlignment = tmCellVerticalAlignmentCenter

End With

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Tables.

Rows (pointer to collection)

Data type: Object

BasicMaker and TextMaker

Returns the Rows collection belonging to the table. You can use it to enumerate the individual rows in the
table, allowing you to get or set their formatting.

Borders (pointer to collection)
Data type: Object

Returns the Borders collection representing the six border lines of the table. You can use this collection to
retrieve and change the line settings (thickness, color, etc.).

ConvertToText (method)

Converts the table to text.
Syntax:

ConvertToText [Separator]
Parameters:

Separator (optional; type: either String or Long or TmTableFieldSeparator) indicates the character
that should be used to separate the columns. You can specify either an arbitrary character or one of the
following symbolic constants:

tmSeparateByCommas = 0 ' Columns separated by commas
tmSeparateByParagraphs = 1 ' Columns separated by paragraphs
tmSeparateByTabs = 2 ' Columns separated by tabs
tmSeparateBySemicolons = 3 ' Columns separated by semicolons

If you omit this parameter, the value tmSeparateByTabs will be assumed.
Return type:
Object (a Range object which represents the converted text)

Example:

' Convert the first table in the document to text
tm.ActiveDocument.Tables.Item(1l) .ConvertToText tmSeparateByTabs

Rows (collection)

Access paths:
= Application = Documents = Item = Tables = Item = Rows
= Application = ActiveDocument = Tables = Item = Rows

ﬂ Description

Rows is a collection of all table rows in a table. The individual elements of this collection are of the type Row.

BasicMaker and TextMaker

ﬂ Access to the collection

Each table has exactly one instance of the Rows collection. It is accessed through the object pointer Rows of
the table:

' Display the number of rows in the first table of the document
MsgBox tm.ActiveDocument.Tables (1) .Rows.Count

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Row (default object)
= Application — Application
= Parent — Table

Count (property, R/0)
Data type: Long

Returns the number of Row objects in the table — in other words: the number of rows in the table.

Item (pointer to object)

Data type: Object
Returns an individual Rew object, i.e. an individual table row.

Which Row object you get depends on the numeric value that you pass to Item: 1 for the first row in the table, 2
for the second, etc.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Table.

BasicMaker and TextMaker

Row (object)

Access paths:
= Application = Documents = Item = Tables = Item = Rows = Item
= Application = ActiveDocument = Tables = Item = Rows = Item

ﬂ Description

A Row object represents one individual table row of a table and allows you to change the formatting of this
table row.

An individual Row object exists for each table row. If you add the rows to a table or delete them, the respective
Row objects will be created or deleted dynamically.

E Access to the object

The individual Row objects can be accessed solely through enumerating the elements of the collection Rows.
Each table in this collection has exactly one instance.

An example:

' Display the height of the second row of the first table
MsgBox tm.ActiveDocument.Tables (l) .Rows.Item(2) .Height

ﬂ Properties, objects, collections and methods

Properties:

= Height

= HeightRule

= KeepTogether

= BreakPageAtRow

= AllowBreakInRow

= RepeatAsHeaderRow

Objects:

= Shading — Shading

= Application — Application
= Parent —> Rows

Collections:
= Cells — Cells
= Borders — Borders

BasicMaker and TextMaker

Height (property)
Data type: Single
Gets or sets the height of the table represented by Row in points (1 point corresponds to 1/72 inches).

Please note that the following applies if the HeightRule property (see below) of the table row is set to
"Automatic":

= When reading this property, the value SmoUndefined (9,999,999) will be returned.

= When changing this property, the method used to determine the height of the table row (HeightRule) will
automatically be changed to "At least".

HeightRule (property)
Data type: Long (TmRowHeightRule)

Gets or sets the method used to determine the height of the table row represented by Row. The possible values

arc:

tmRowHeightAuto = 0 ' Set row height to "automatic"
tmRowHeightExact = 1 ' Set row height to "exact"
tmRowHeightAtLeast = 2 ' Set row height to "at least"
KeepTogether (property)

Data type: Boolean
Gets or sets the property "Keep together with next row".

If set to True, TextMaker will not be allowed to insert an automatic page break between the table row and the
next one. Instead, the break will be inserted above the row.

BreakPageAtRow (property)

Data type: Boolean

Gets or sets the property "Break page at row". If set to True, TextMaker inserts a page break above the table
TOW.

AllowBreakinRow (property)
Data type: Boolean
Gets or sets the property "Allow page break in row".

If set to True, TextMaker is allowed to insert a page break within the row if required. If set to False, the whole
table row will be moved to the next page.

BasicMaker and TextMaker

RepeatAsHeaderRow (property)

Data type: Boolean
Gets or sets the property "Repeat row as header". This property is available only for the first row in a table.

If set to True, TextMaker repeats the row on every page, if the table extends over two or more pages. This is
useful for repeating table headings on each page.

Shading (pointer to object)

Data type: Object

Returns the Shading object belonging to Row which represents the shading of the entire table row.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Rows.

Cells (pointer to collection)

Data type: Object

Returns the Cells collection belonging to the table which contains all cells of the table row.

Borders (pointer to collection)

Data type: Object

Returns the Borders collection representing the five border lines of the table row. You can use this collection
to retrieve and change the line settings (thickness, color, etc.).

Cells (collection)

Access paths:
= Application = Documents = Item = Tables = Item = Rows = Item = Cells
= Application = ActiveDocument = Tables = Item = Rows = Item = Cells

BasicMaker and TextMaker

n Description

Cells is a collection of all table cells in an individual table row. The individual elements of this collection are of
the type Cell.

E Access to the collection

Each row of a table has exactly one instance of the Cells collection. It is accessed through the object pointer
Cells of the table row:

' Display the number of cells in the secondnd row of the first table
MsgBox tm.ActiveDocument.Tables(1l) .Rows (2) .Cells.Count

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Cell (default object)
= Application — Application
= Parent -> Row

Count (property, R/0)
Data type: Long

Returns the number of Cell objects in the table row — in other words: the number of cells in the table row.

Item (pointer to object)
Data type: Object
Returns an individual Cell object, i.e. an individual table cell.

Which Cell object you get depends on the numeric value that you pass to Item: 1 for the first cell in the table
row, 2 for the second, etc.

Application (pointer to object)
Data type: Object
Returns the Application object.

BasicMaker and TextMaker

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Table.

Cell (object)

Access paths:

= Application = Documents = Item - Tables - Item > Cell(x, y) > Item

= Application = ActiveDocument - Tables - Item > Cell(x, y) = Item

= Application = Documents = Item > Tables = Item = Rows = Item > Cells > Item
= Application = ActiveDocument - Tables = Item - Rows - Item > Cells > Item

n Description

A Cell object represents one individual cell of a table row and allows you to retrieve and change the formatting
of this table cell.

An individual Cell object exists for each cell. If you add cells to a table row or delete them, the respective Cell
objects will be created or deleted dynamically.

ﬂ Access to the object

The individual Cell objects can be accessed solely through enumerating the elements of the collection Cells.
Each row in a table has exactly one instance of this collection.

An example:

' Set the width of the fifth cell in the second row of the first table to 25
tm.ActiveDocument.Tables (1) .Rows (2) .Cells (5) .PreferredWidth = 25

ﬂ Properties, objects, collections and methods

Properties:

= PreferredWidthType
= PreferredWidth
= Width

= VerticalAlignment
= Orientation

* LockText

= LeftPadding

= RightPadding

= TopPadding

= BottomPadding

BasicMaker and TextMaker

Objects:
= Shading — Shading

= Application — Application
= Parent — Row

Collections:
= Borders — Borders

PreferredWidthType (property)
Data type: Long (TmPreferredWidthType)

Gets or sets the method used to determine the width of the cell. The possible values are:

tmPreferredWidthPoints 0 ' width in points
tmPreferredWidthPercent = 1 ' width in percent
tmPreferredWidthAuto = 2 ' automatic width

PreferredWidth (property)

Data type: Single

Gets or sets the width of the cell. Depending on the width type of the cell, the value is expressed either in points
or in percent (see PreferredWidthType above).

Example:

' Set the width for the first cell to 25 percent
tm.ActiveDocument.Tables (1) .Rows (1) .Cells (1) .PreferredWidthType =

tmPreferredWidthPercent
tm.ActiveDocument.Tables (1) .Rows (1) .Cells (1) .PreferredWidth = 25

' Set the width for the second cell to 3.5cm
tm.ActiveDocument.Tables (1) .Rows (1) .Cells (2) .PreferredWidthType =

tmPreferredWidthPoints
tm.ActiveDocument.Tables (1) .Rows (1) .Cells (1) .PreferredWidth =
tm.CentimetersToPoints (3.5)

Width (property)
Data type: Single
Gets or sets the width of the cell in points (1 point corresponds to 1/72 inches).

Unlike the PreferredWidth property (see there), it will be ignored whether the cell has an absolute, percentual
or automatic width — it will always return the width in points.

VerticalAlignment (property)
Data type: Long (TmCellVertical Alignment)

BasicMaker and TextMaker

Gets or sets the vertical alignment of the text inside the cell. The possible values are:

tmCellVerticalAlignmentTop
tmCellVerticalAlignmentCenter
tmCellVerticalAlignmentBottom
tmCellVerticalAlignmentJustify

top alignment

center alignment
bottom alignment
vertical justification

A}
A}
A}
A}

w NP O

Orientation (property)

Data type: Long

Gets or sets the print orientation of the cell. Possible values: 0, 90, 180 and -90, corresponding to the respective
rotation angle.

Note: The value 270 will be automatically converted to -90.

LockText (property)

Data type: Boolean

Gets or sets the property "Lock text" for the cell (True or False). Note that TextMaker locks the cell only when
form mode is active.

LeftPadding (property)
Data type: Single

Gets or sets the left text margin inside the cell, measured in points (1 point corresponds to 1/72 inches).

RightPadding (property)
Data type: Single

Gets or sets the right text margin inside the cell, measured in points (1 point corresponds to 1/72 inches).

TopPadding (property)
Data type: Single

Gets or sets the top text margin inside the cell, measured in points (1 point corresponds to 1/72 inches).

BottomPadding (property)
Data type: Single

Gets or sets the bottom text margin inside the cell, measured in points (1 point corresponds to 1/72 inches).

BasicMaker and TextMaker

Shading (pointer to object)

Data type: Object

Returns the Shading object which you can use to access the shading of the table cell.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Row.

Borders (pointer to collection)
Data type: Object

Returns a Borders collection representing the four border lines of the table cell. You can use this collection to
retrieve and change the line settings (thickness, color, etc.).

Borders (collection)

Access paths for paragraph borders:
= Application = Documents = Item = Paragraphs = Item = Borders
= Application = ActiveDocument = Paragraphs = Item = Borders

Access paths for table borders:
= Application = Documents = Item = Tables = Item = Borders
= Application = ActiveDocument = Tables = Item = Borders

Access path for table row borders:
= Application = Documents = Item = Tables = Item = Rows = Item = Borders
= Application = ActiveDocument = Tables = Item = Rows = Item = Borders

Access path for table cell borders:

= Application 2 Documents = Item = Tables = Item = Cell(x, y) = Borders

= Application 2 ActiveDocument = Tables = Item = Cell(x, y) > Borders

= Application 2 Documents = Item = Tables = Item = Rows = Item = Cells = Item = Borders
= Application 2 ActiveDocument = Tables = Item =2 Rows = Item = Cells = Item - Borders

BasicMaker and TextMaker

n Description

Borders is a collection of the border lines (left, right, top, bottom, etc.) of a paragraph, a table, a table row or a
cell. Accordingly, it is a child object of either Paragraph, Table, Row or Cell.

The individual elements of this collection are of the type Border.

ﬂ Access to the object

Each paragraph, table, table row or cell has exactly one instance of the Borders collection. It is accessed
through the object pointer Borders in the respective object. The parameter you pass is the number of the border
that you would like to access, as follows:

tmBorderTop = -1 ' Top border line

tmBorderLeft = -2 ' Left border line

tmBorderBottom = -3 ' Bottom border line

tmBorderRight = -4 ' Right border line

tmBorderHorizontal = -5 ' Horizontal grid line (only for tables)
tmBorderVertical = -6 ' Vertical grid line (only for tables and table rows)
tmBorderBetween = -7 ' Border line between paragraphs (only for paragraphs)
Examples:

' Change the left border of the first paragraph
tm.ActiveDocument.Paragraphs (1) .Borders (tmBorderLeft) .Type = tmLineStyleSingle

' Change the top border of the first table
tm.ActiveDocument.Tables (1) .Borders (tmBorderTop) .Type = tmLineStyleDouble

' Change the vertical grid lines of the second row in the first table
tm.ActiveDocument.Tables (1) .Rows (2) .Borders (tmBorderVertical) .Color = smoColorRed

' Change the bottom border of the third cell in the second row from the first
table
tm.ActiveDocument.Tables (1) .Rows (2) .Cells (3) .Borders (tmBorderBottom) .Type =
tmLineStyleDouble

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Border (default object)

= Application — Application

= Parent — Paragraph, Table, Row or Cell

Count (property, R/0)

Data type: Long

BasicMaker and TextMaker

Returns the number of Border objects in the collection, i.e. the number of border lines available for the related
object:

= When used as a child object of a Paragraph object, Count returns the value 5, since paragraphs have five
different types of border lines (left, right, top, bottom, between the paragraphs).

= When used as a child object of a Table object, Count returns 6, since tables have six different types of
border lines (left, right, top, bottom, horizontal gutter, vertical gutter).

= When used as a child object of a Row object, Count returns 5, since table rows have five different types of
border lines (left, right, top, bottom, vertical gutter).

= When used as a child object of a Cell object, Count returns 4, since table cells have four different types of
border lines (left, right, top, bottom).

Item (pointer to object)

Data type: Object

Returns an individual Border object that you can use to get or set the properties (such as color and thickness)
of one individual border line.

Which Border object you get depends on the numeric value that you pass to Item. The following table shows
the admissible values:

tmBorderTop = -1 ' Top border line

tmBorderLeft = -2 ' Left border line

tmBorderBottom = -3 ' Bottom border line

tmBorderRight = -4 ' Right border line

tmBorderHorizontal = -5 ' Horizontal grid line (only for tables)
tmBorderVertical = -6 ' Vertical grid line (only for tables and table rows)
tmBorderBetween = -7 ' Border line between paragraphs (only for paragraphs)

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object
Returns the parent object, i.e. an object of the types Paragraph, Table, Row or Cell.

Example for the usage of the Borders collection

Sub Main
Dim tm as Object

Set tm = CreateObject ("TextMaker.Application")
tm.Visible = True

BasicMaker and TextMaker

With tm.ActiveDocument.Paragraphs.Item(1l)
.Borders (tmBorderLeft) .Type = tmLineStyleSingle

.Borders (tmBorderLeft) .Thickl = 4
.Borders (tmBorderLeft) .Color = smoColorBlue
.Borders (tmBorderRight) . Type = tmLineStyleDouble
.Borders (tmBorderRight) .Thickl = 1
.Borders (tmBorderRight) .Thick2 = 1
.Borders (tmBorderRight) .Color = smoColorRed

End With

Set tm = Nothing
End Sub

Border (object)

Access paths for paragraph borders:
= Application = Documents = Item = Paragraphs = Item = Borders = Item
= Application = ActiveDocument = Paragraphs = Item = Borders = Item

Access paths for table borders:
= Application = Documents = Item = Tables = Item = Borders = Item
= Application = ActiveDocument = Tables = Item = Borders = Item

Access path for table row borders:
= Application = Documents = Item = Tables = Item = Rows = Item = Borders = Item
= Application = ActiveDocument = Tables = Item = Rows = Item = Borders = Item

Access path for table cell borders:

= Application 2 Documents = Item = Tables = Item = Cell(x, y) = Borders = Item

= Application 2 ActiveDocument = Tables = Item = Cell(x, y) = Borders = Item

= Application 2 Documents = Item = Tables = Item = Rows = Item = Cells = Item = Borders = Item
= Application 2 ActiveDocument = Tables = Item - Rows = Item = Cells > Item = Borders = Item

n Description

A Border object represents one individual border line of a paragraph, a table, a table row or a table cell — for
example the left, right, top, or bottom line. You can use this object to get or change the line settings (thickness,
color, etc.) of a border line.

E Access to the object

The individual Border objects can only be accessed via the Borders collection of paragraph, table, table row,
or table cell. The parameter you pass to the Borders collection is the number of the border that you would like

to access:

tmBorderTop = -1 ' Top border line
tmBorderLeft = -2 ' Left border line
tmBorderBottom = -3 ' Bottom border line

BasicMaker and TextMaker

tmBorderRight = -4 ' Right border line

tmBorderHorizontal -5 ' Horizontal grid line (only for tables)
tmBorderVertical Vertical grid line (only for tables and table rows)
tmBorderBetween = -7 ' Border line between paragraphs (only for paragraphs)

Il
|
()}

Some examples:

' Change the left border of the first paragraph
tm.ActiveDocument.Paragraphs (1) .Borders (tmBorderLeft) .Type = tmLineStyleSingle

' Change the top border of the first table
tm.ActiveDocument.Tables (1) .Borders (tmBorderTop) .Type = tmLineStyleDouble

' Change the vertical grid lines of the second row in the first table
tm.ActiveDocument.Tables (1) .Rows (2) .Borders (tmBorderVertical) .Color = smoColorRed

' Change the bottom border of the third cell in the second row from the first
table
tm.ActiveDocument.Tables (1) .Rows (2) .Cells (3) .Borders (tmBorderBottom) .Type =
tmLineStyleDouble

ﬂ Properties, objects, collections and methods

Properties:

= Type

= Thickl

= Thick2

= Separation
= Color

= ColorIndex

Objects:
= Application — Application
= Parent — Borders

Type (property)
Data type: Long (TmLineStyle)

Gets or sets the type of the border line. The possible values are:

tmLineStyleNone = 0 ' No border
tmLineStyleSingle =1 ' Simple border
tmLineStyleDouble 2 ' Double border
Thick1 (property)

Data type: Single

Gets or sets the thickness of the first border line in points (1 point corresponds to 1/72 inches).

BasicMaker and TextMaker

Thick2 (property)
Data type: Single
Gets or sets the thickness of the second border line in points (1 point corresponds to 1/72 inches).

This property is used only if the type of the border is set to tmLineStyleDouble.

Separation (property)
Data type: Single
Gets or sets the offset between two border lines in points (1 point corresponds to 1/72 inches).

This property is used only if the type of the border is set to tmLineStyleDouble.

Color (property)

Data type: Long (SmoColor)

Gets or sets the color of the border line(s) as a "BGR" value (Blue-Green-Red triplet). You can either provide
an arbitrary value or use one of the pre-defined BGR color constants.

Colorindex (property)
Data type: Long (SmoColorIndex)

Gets or sets the color of the border line(s) as an index color. "Index colors" are the standard colors of
TextMaker, numbered from 0 for black to 15 for light gray. You may use the values shown in the Index colors
table.

Note: It is recommended to use the Color property (see above) instead of this one, since it is not limited to the
16 standard colors but enables you to access the entire BGR color palette.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. Borders.

BasicMaker and TextMaker

Shading (object)

Access paths for paragraph shading:
= Application = Documents = Item > Paragraphs = Item = Shading
= Application = ActiveDocument = Paragraphs = Item = Shading

Access paths for table shading:
= Application > Documents = Item - Tables - Item - Shading
= Application > ActiveDocument - Tables = Item - Shading

Access paths for table row shading:
= Application = Documents = Item > Tables = Item = Rows = Item = Shading
= Application = ActiveDocument = Tables = Item = Rows = Item - Shading

Access paths for table cell shading:

= Application > Documents = Item - Tables = Item = Cell(x, y) = Shading

= Application > ActiveDocument - Tables = Item = Cell(x, v) = Shading

= Application = Documents = Item - Tables > Item = Rows - Item > Cells - Item - Shading
= Application = ActiveDocument - Tables = Item = Rows - Item > Cells = Item - Shading

n Description

The Shading object represents the shading of paragraphs, tables, table rows and cells. It is a child object of
Paragraph, Table, Row or Cell.

E Access to the object

Each paragraph, table, table tow or cell has exactly one instance of the Shading object. It is accessed through
the object pointer Shading in the respective object:

' Change the shading of the first paragraph
tm.ActiveDocument.Paragraphs (1) .Shading.Texture = smoPatternHalftone

' Change the shading of the first table
tm.ActiveDocument.Tables (1) .Shading.Texture = smoPatternHalftone

' Change the shading of the second row in the first table
tm.ActiveDocument.Tables (1) .Rows (2) .Shading.Texture = smoPatternHalftone

' Change the shading of the third cell in the second row from the first table
tm.ActiveDocument.Tables (1) .Rows (2) .Cells (3) .Shading.Texture = smoPatternHalftone

B Properties, objects, collections and methods

Properties:
= Texture
= Intensity
= ForegroundPatternColor

BasicMaker and TextMaker

= ForegroundPatternColorIndex
= BackgroundPatternColor
= BackgroundPatternColorIndex

Objects:
= Application — Application
= Parent — Paragraph, Table, Row or Cell

Texture (property)
Data type: Long (SmoShadePatterns)

Gets or sets the fill pattern for the shading. The possible values are:

smoPatternNone =
smoPatternHalftone
smoPatternRightDiagCoarse
smoPatternLeftDiagCoarse =
smoPatternHashDiagCoarse
smoPatternVertCoarse
smoPatternHorzCoarse =
smoPatternHashCoarse
smoPatternRightDiagFine
smoPatternLeftDiagFine =9

Il
O Jo 0w N E O

smoPatternHashDiagFine = 10
smoPatternVertFine =11
smoPatternHorzFine =12
smoPatternHashFine = 13

To add a shading, set the Texture property to smoPatternHalftone and specify the required intensity of
shading with the Intensity property.

To add a pattern, set the Texture property to one of the values from smoPatternRightDiagCoarse to
smoPatternHashFine.

To remove an existing shading or pattern, set the Texture property to smoPatternNone.

Intensity (property)
Data type: Long
Gets or sets the intensity of the shading. The possible values are between 0 and 100 (percent).

This value can be set or get only if a shading was chosen with the Texture property (i.e., the Texture property
was set to smoPatternHalftone). If a pattern was chosen (i.e., the Texture property has any other value),
accessing the Intensity property fails.

ForegroundPatternColor (property)
Data type: Long (SmoColor)

Gets or sets the foreground color for the shading or pattern as a "BGR" value (Blue-Green-Red triplet). You can
either provide an arbitrary value or use one of the pre-defined BGR color constants.

BasicMaker and TextMaker

ForegroundPatternColorindex (property)

Data type: Long (SmoColorIndex)

Gets or sets the foreground color for the shading or pattern as an index color. "Index colors" are the 16 standard
colors of TextMaker, numbered from O for black to 15 for light gray. You may use the values shown in the
Index colors table.

Note: It is recommended to use the ForegroundPatternColor property (see above) instead of this one, since it
is not limited to the 16 standard colors but enables you to access the entire BGR color palette.

BackgroundPatternColor (property)

Data type: Long (SmoColor)

Gets or sets the background color for the shading or pattern as a "BGR" value (Blue-Green-Red triplet). You
can either provide an arbitrary value or use one of the pre-defined BGR color constants.

BackgroundPatternColorindex (property)
Data type: Long (SmoColorIndex)

Gets or sets the background color for the shading or pattern as an index color. "Index colors" are the standard
colors of TextMaker, numbered from O for black to 15 for light gray. You may use the values shown in the
Index colors table.

Note: It is recommended to use the ForegroundPatternColor property (see above) instead of this one, since it
is not limited to the 16 standard colors but enables you to access the entire BGR color palette.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the types Paragraph, Table, Row or Cell.

Example for the usage of the Shading object

Sub Main
Dim tm as Object

Set tm = CreateObject ("TextMaker.Application")
tm.Visible = True

With tm.ActiveDocument.Paragraphs.Item(1)

BasicMaker and TextMaker

.Shading.Texture = smoPatternHorzFine
.Shading.BackgroundPatternColor = smoColorAgqua
End With

Set tm = Nothing
End Sub

FormFields (collection)

Access paths:
= Application = Documents = Item = FormFields
= Application = ActiveDocument = FormFields

ﬂ Description

FormFields is a collection of all form objects (text fields, check boxes and drop-down lists) in a document. The
individual elements of this collection are of the type FormField.

ﬂ Access to the collection

Each open document has exactly one instance of the FormFields collection. It is accessed through
Document.FormFields:

' Display the number of form fields in the active document
MsgBox tm.ActiveDocument.FormFields.Count

ﬂ Properties, objects, collections and methods

Properties:

= Count R/O

= DisplayFieldNames

= Shaded

Objects:

= Item — FormField (default object)
= Application — Application

= Parent - Document

Count (property, R/0)
Data type: Long

Returns the number of FormField objects in the document — in other words: the number of form objects in the
document.

BasicMaker and TextMaker

DisplayFieldNames (property)
Data type: Boolean

Gets or sets the setting "Display field names" in the respective document (True or False).

Shaded (property)
Data type: Boolean

Gets or sets the setting "Shade fields" in the respective document (True or False).

Item (pointer to object)
Data type: Object
Returns an individual FormField object, i.e. an individual form object.

Which FormField object you get depends on the parameter that you pass to Item. You can specify either the
numeric index or the name of the desired form object. Examples:

' Show the numeric type of the first form field in the document
MsgBox tm.ActiveDocument.FormFields (1) .Type

' Show the numeric type of the form field named "DropDownl"
MsgBox tm.ActiveDocument.FormFields ("DropDownl") .Type

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Document.

FormField (object)

Access paths:
= Application = Documents = Item = FormFields = Item
= Application = ActiveDocument = FormFields = Item

BasicMaker and TextMaker

n Description

A FormField object represents one individual form object of a document and allows you to retrieve the value it
returns or to change its formatting.

Each form object can represent either a text field, a check box or a drop-down list.

An individual FormField object exists for each form object. If you add form objects to a document or delete
them, the respective FormField objects will be created or deleted dynamically.

E Access to the object

The individual FormField objects can be accessed solely through enumerating the elements of the collection
FormFields. Each document has exactly one instance of this collection.

An example:

' Show the name of the first form object in the document
MsgBox tm.ActiveDocument.FormFields (1) .Name

Text fields, check boxes and drop-down lists have common properties as well as type-specific ones. Accessing
these properties can be performed in different ways:

= Properties that are available in all form objects (for example, whether they are visible) can be found directly
in the FormField object. Details on these properties will follow below.

= Properties that are #ype-specific (for example, only selection lists possess a list of all their elements) can be
found in the TextInput, CheckBox and DropDown child objects. These properties are documented for each
child object.

ﬂ Properties, objects, collections and methods

Properties:

= Name

= Visible

= Printable
= Locked

= Tabstop

= Type R/O
= Result R/O

Objects:

= TextInput — TextInput

= CheckBox — CheckBox

* DropDown — DropDown
= Application — Application
= Parent — FormFields

BasicMaker and TextMaker

Name (property)
Data type: String

Gets or sets the name of the object. Corresponds to the "Name" option on the Properties tab of the dialog box
with the properties of an object.

Visible (property)
Data type: Boolean

Gets or sets the "Visible" setting of the object (True or False). Corresponds to the "Visible" option on the
Properties tab of the dialog box with the properties of an object.

Printable (property)

Data type: Boolean

Gets or sets the "Printable" setting of the object (True or False). Corresponds to the "Printable" option on the
Properties tab of the dialog box with the properties of an object.

Locked (property)
Data type: Boolean

Gets or sets the "Locked" setting of the object (True or False). Corresponds to the "Locked" option on the
Properties tab of the dialog box with the properties of an object.

Tabstop (property)

Data type: Boolean

Gets or sets the setting whether the object has a tab stop (True or False). Corresponds to the "Tab stop" option
on the Properties tab of the dialog box with the properties of an object.

Type (property, R/0)
Data type: Long (TmFieldType)

Returns the type of the object as a numeric value. The possible values are:

tmFieldFormTextInput =1 ' Text field
tmFieldFormCheckBox = 10 ' Check box
tmFieldFormDropDown = 11 ' Drop-down list
Result (property, R/0)

Data type: String

BasicMaker and TextMaker

Returns the current result of the object:
= For CheckBox: the text of the checkbox if it is checked; otherwise an empty string
= For DropDown: the entry selected at the moment (as text)

= For TextInput: the content of the text field

Textinput (pointer to object)
Data type: Object
Returns the TextInput object that allows you to access the text field specific properties of the form object.

Note: The form object represents a text field or a text frame only if the property TextInput.Valid returns True.

CheckBox (pointer to object)
Data type: Object
Returns the CheckBox object that allows you to access the checkbox specific properties of the form object.

Note: The form object represents a checkbox only if the property CheckBox.Valid returns True.

DropDown (pointer to object)

Data type: Object

Returns the DropDown object that allows you to access the drop-down list specific properties of the form
object.

Note: The form object represents a drop-down list only if the property DropDown.Valid returns True.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type FormFields.

BasicMaker and TextMaker

TextInput (object)

Access paths:
= Application = Documents = Item = FormFields = Item = TextInput
= Application = ActiveDocument = FormFields = Item = TextInput

ﬂ Description

A TextInput object represents one individual form object of the type TextInput and allows you to retrieve and
change its value.

A TextInput object can be any of the following object types:

= atext field, created with the ribbon command Insert | Objects group | Form object | Text field;
= atext frame, created with the ribbon command Insert | Objects group | Text frame; or

= adrawing, to which text has been added using the Add text command.

TextInput is a child object of FormField.

E Access to the object

The TextInput object can be accessed solely through its parent object FormField.

Only if the property TextInput.Valid returns the value True, the form object really represents a text field — and
not a check box or a drop-down list.

An example:

' Check the type of the first form object.
' If it is a TextInput object, output its text.

If tm.ActiveDocument.FormFields (1) .TextInput.Valid Then
MsgBox tm.ActiveDocument.FormFields (1) .TextInput.Text
End If

ﬂ Properties, objects, collections and methods

Properties:

= Text (default property)
= Valid R/O

= LockText

Objects:

= Application — Application
= Parent - FormField

BasicMaker and TextMaker

Text (property)

Data type: String

Gets or sets the content of the text field.

Valid (property, R/0)
Data type: Boolean

Returns False if the object is not a TextInput object.

LockText (property)
Data type: Boolean

Gets or sets the setting "Lock text" of the text field (True or False). Corresponds to the "Locked" option on the
Properties tab of the dialog box with the properties of an object.

Note that TextMaker locks the text field against text input only when form mode is active.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type FormField.

CheckBox (object)

Access paths:
= Application = Documents = Item = FormFields = Item = CheckBox
= Application = ActiveDocument = FormFields = Item = CheckBox

ﬂ Description

A CheckBox object represents one individual form object of the type CheckBox and allows you to retrieve and
change its value.

CheckBox is a child object of FormField.

BasicMaker and TextMaker

ﬂ Access to the object
The CheckBox object can be accessed solely through its parent object FormField.

Only if the property CheckBox.Valid returns the value True, the form object really represents a check box —
and not a text field or a drop-down list.

An example:

' Check the type of the first form object.

' If it is a CheckBox object,

' output its value (True or False).

If tm.ActiveDocument.FormFields (1) .CheckBox.Valid Then

MsgBox tm.ActiveDocument.FormFields (1) .CheckBox.Value
End If

ﬂ Properties, objects, collections and methods

Properties:

* Value (default property)
= Text

* Valid R/O

Objects:

= Application — Application
= Parent — FormField

Value (property)
Data type: Boolean

Gets or sets the property whether the check box is checked or not (True or False).

Text (property)

Data type: String

Gets or sets the text of the check box.

Valid (property, R/0)
Data type: Boolean

Returns False if the object is not a CheckBox object.

Application (pointer to object)

Data type: Object

BasicMaker and TextMaker

Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type FormField.

DropDown (object)

Access paths:
= Application - Documents = Item - FormFields = Item = DropDown
= Application > ActiveDocument - FormFields - Item = DropDown

ﬂ Description

A DropDown object represents one individual form object of the type DropDown (drop-down list) and allows
you to retrieve and change its value.

DropDown is a child object of FormField

E Access to the object

The DropDown object can be accessed solely through its parent object FormField.

Only if the property DropDown.Valid returns the value True, the form object really represents a drop-down
list — and not a text field or a check box.

An example:

' Check the type of the first form object. If it is a
' DropDown object, display the number of the selected item.

If tm.ActiveDocument.FormFields (1) .DropDown.Valid Then
MsgBox tm.ActiveDocument.FormFields (1) .DropDown.Value
End If

ﬂ Properties, objects, collections and methods

Properties:

= Value (default property)
* Valid R/O

= ListEntries

Objects:
= Application — Application

BasicMaker and TextMaker

= Parent — FormField

Value (property)

Data type: Long

Gets or sets the numeric index of the selected list entry.

Valid (property, R/0)
Data type: Boolean

Returns False if the object is not a DropDown object.

ListEntries (pointer to collection)

Data type: Object

Returns the ListEntries collection with all entries from the selection list. You can use this collection to read
and edit the entries in the selection list (delete existing entries and add new ones).

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type FormField.

ListEntries (collection)

Access paths:
= Application = Documents = Item = FormFields = Item = DropDown = ListEntries
= Application = ActiveDocument = FormFields = Item = DropDown = ListEntries

n Description

ListEntries is a collection of all list entries of a DropDown object. This allows you to view and edit the
individual entries in a selection list.

The individual elements of this collection are of the type ListEntry.

BasicMaker and TextMaker

ﬂ Access to the collection

Each DropDown form object has exactly one instance of the ListEntries collection. It is accessed through
DropDown.ListEntries:

' Show the number of list entries in the first form element
' (if it is really a drop-down list)

If tm.ActiveDocument.FormFields (1) .DropDown.Valid Then

MsgBox tm.ActiveDocument.FormFields (1) .DropDown.ListEntries.Count
End If

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Item — ListEntry (default object)
= Application — Application

= Parent — DropDown

Methods:
= Add
= Clear

Count (property, R/0)
Data type: Long

Returns the number of ListEntry objects in the collection — in other words: the number of entries in the drop-
down list.

Item (pointer to object)
Data type: Object
Returns an individual ListEntry object, i.e. an individual list entry in the drop-down list.

Which ListEntry object you get depends on the parameter that you pass to Item. You can specify either the
numeric index or the name of the desired list entry. Examples:

' Show the first list entry
MsgBox tm.FormFields (1) .DropDown.ListEntries.Item(1) .Name

' Show the list entry with the text "Test"
MsgBox tm.FormFields (1) .DropDown.ListEntries.Item("Test") .Name

BasicMaker and TextMaker

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object
Returns the parent object, i.e. an object of the type DropDown.

Add (method)
Adds a new entry to the drop-down list.

Syntax:

Add Name
Parameters:

Name (type: String) specifies the string to be added.
Return type:

Object (a ListEntry object that represents the new entry)

Example:

' Add an entry to the first form field in the document (a drop-down list)
tm.ActiveDocument.FormFields (1) .DropDown.ListEntries.Add "Green"

' The same, but using the return value (mind the parentheses!)

Dim entry as Object
Set entry = tm.ActiveDocument.FormFields (1) .DropDown.ListEntries.Add ("Green")

Clear (method)
Deletes all entries from the drop-down list.

Syntax:

Clear
Parameters:

none
Return type:

none

Example:

BasicMaker and TextMaker

' Delete all entries from the first form field in the document
tm.ActiveDocument.FormFields (1) .DropDown.ListEntries.Clear

ListEntry (object)

Access paths:
= Application = Documents = Item = FormFields = Item = DropDown = ListEntries = Item
= Application = ActiveDocument = FormFields = Item = DropDown = ListEntries = Item

n Description

A ListEntry object represents one individual entry in a drop-down list (a form object) and allows you to
retrieve, change and delete it.

An individual ListEntry object exists for each entry in a drop-down list. If you add entries to a drop-down list
or delete them, the respective ListEntry objects will be created or deleted dynamically.

ﬂ Access to the object

The individual ListEntry objects can be accessed solely through enumerating the elements of the collection
ListEntries. Each selection list has exactly one instance of this collection.

An example:

' Show an entry from the first form field in the document (a drop-down list)
MsgBox tm.ActiveDocument.FormFields (1) .DropDown.ListEntries.Item(1) .Name

ﬂ Properties, objects, collections and methods

Properties:
= Name (default property)

Objects:
= Application — Application
= Parent — ListEntries

Methods:
= Delete

Name (property)
Data type: String
Gets or sets the content of the ListEntry object — in other words: the content of the respective list entry.

Examples:

BasicMaker and TextMaker

' Show the first list entry
MsgBox tm.ActiveDocument.FormFields (1) .DropDown.ListEntries.Item (1) .Name

' Set a new value for the first list entry
tm.ActiveDocument.FormFields (1) .DropDown.ListEntries.Item(1l) .Name = "Green"

Note: You can use this method to replace the text only in already existing list entries. If you want to add new
entries to the list, use the method Add from the ListEntries collection.

Application (pointer to object)

Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type ListEntries.

Delete (method)
Deletes the ListEntry object from the parent ListEntries collection.
Syntax:
Delete
Parameters:
none
Return type:
none

Example:

' Delete the first list entry
tm.ActiveDocument.FormFields (1) .DropDown.ListEntries.Item(1l) .Delete

Windows (collection)

Access path: Application = Windows

BasicMaker and TextMaker

n Description

The Windows collection contains all open document windows. The individual elements of this collection are of
the type Window.

E Access to the collection

There is exactly one instance of the Windows collection during the whole runtime of TextMaker. It is accessed
through Application.Windows:

' Show the number of open document windows
MsgBox tm.Application.Windows.Count

' Show the name of the first open document window
MsgBox tm.Application.Windows (1) .Name

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Item — Window (default object)
= Application — Application

= Parent — Application

Count (property, R/0)
Data type: Long

Returns the number of Window objects in TextMaker — in other words: the number of open document
windows.

Item (pointer to object)
Data type: Object
Returns an individual Window object, i.e. an individual document window.

Which Window object you get depends on the parameter that you pass to Item. You can specify either the
numeric index or the name of the desired document window. Examples:

' Show the name of the first document window
MsgBox tm.Application.Windows.Item(1l) .FullName

' Show the name of the document window "Test.tmdx" (if currently open)
MsgBox tm.Application.Windows.Item("Test.tmdx") .FullName

' You can also use the full name with path

BasicMaker and TextMaker

MsgBox tm.Application.Windows.Item("c:\Documents\Test.tmdx") .FullName

Application (pointer to object)
Data type: Object

Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.c. Application.

Window (object)

Access paths:

= Application = Windows = Item

= Application > ActiveWindow

= Application = Documents = Item = ActiveWindow
= Application = ActiveDocument = ActiveWindow

ﬂ Description
A Window object represents one individual document window that is currently open in TextMaker.

An individual Window object exists for each document window. If you open or close document windows, the
respective Window objects will be created or deleted dynamically.

E Access to the object
The individual Window objects can be accessed in any of the following ways:
= All open document windows are managed in the Application.Windows collection (type: Windows):

A}

Show the names of all open document windows

For i = 1 To tm.Application.Windows.Count
MsgBox tm.Application.Windows.Item (i) .Name
Next i

= You can access the currently active document window through Application.ActiveWindow:

A}

Show the name of the active document window
MsgBox tm.Application.ActiveWindow.Name

= Window is the Parent of the View object:

' Show the name of the current document in an indirect way

BasicMaker and TextMaker

MsgBox tm.Application.ActiveWindow.View.Parent.Name

= The object Document contains an object pointer to the respective document window:

' Access the active document window through the active document
MsgBox tm.Application.ActiveDocument.ActiveWindow.Name

ﬂ Properties, objects, collections and methods

Properties:

* FullName R/O

= Name R/O

= Path R/O

= Left

= Top

* Width

= Height

= WindowState

= DisplayHorizontalRuler
= DisplayVerticalRuler

= DisplayRulers

= DisplayHorizontalScrollBar
= DisplayVerticalScrollBar

Objects:

* Document — Document

" View — View

= Application — Application
= Parent > Windows

Methods:

= Activate
= Close

FullName (property, R/0)

Data type: String

Returns the path and file name of the document opened in the window (e.g., "c:\Letters\Smith.tmdx").

Name (property, R/0)
Data type: String

Returns the file name of the document opened in the window (e.g., "Smith.tmdx").

Path (property, R/0)
Data type: String

BasicMaker and TextMaker

Returns the path of the document opened in the window (e.g., c:\Letters).

Left (property)
Data type: Long

Gets or sets the horizontal position of the window, measured in screen pixels.

Top (property)
Data type: Long

Gets or sets the vertical position of the window, measured in screen pixels.

Width (property)
Data type: Long

Gets or sets the width of the document window, measured in screen pixels.

Height (property)
Data type: Long

Gets or sets the height of the document window, measured in screen pixels.

WindowState (property)

Data type: Long (SmoWindowState)

Gets or sets the state of the document window. The possible values are:

smoWindowStateNormal =1 ' normal
smoWindowStateMinimize = 2 ' minimized
smoWindowStateMaximize = 3 ' maximized

DisplayHorizontalRuler (property)
Data type: Boolean

Gets or sets the setting whether a horizontal ruler should be shown in the document window (True or False).

DisplayVerticalRuler (property)
Data type: Boolean

Gets or sets the setting whether a vertical ruler should be shown in the document window (True or False).

BasicMaker and TextMaker

DisplayRulers (property)
Data type: Boolean

Gets or sets the setting whether both horizontal and vertical rulers should be shown in the document window
(True or False).

DisplayHorizontalScrollBar (property)
Data type: Boolean

Gets or sets the setting whether a horizontal scroll bar should be shown in the document window (True or
False).

DisplayVerticalScrollBar (property)

Data type: Boolean

Gets or sets the setting whether a vertical scroll bar should be shown in the document window (True or False).

Document (pointer to object)

Data type: Object

Returns the Document object assigned to this document window. With this you can read and set numerous
settings of your document.

View (pointer to object)

Data type: Object

Returns the View object from the document window. You can use this to read and set various settings for the
screen display.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Windows.

BasicMaker and TextMaker

Activate (method)

Brings the document window to the foreground (if the property Visible for this document is True) and sets the
focus to it.

Syntax:
Activate
Parameters:
none
Return type:
none

Example:

' Activate the first document window
tm.Windows (1) .Activate

Close (method)
Closes the document window.
Syntax:

Close [SaveChanges]
Parameters:

SaveChanges (optional; type: Long or SmoSaveOptions) indicates whether the document opened in the
window should be saved or not (if it was changed since last save). If you omit this parameter, the user
will be asked to indicate it (if necessary). The possible values for SaveChanges are:

smoDoNotSaveChanges = 0 ' Don't ask, don't save
smoPromptToSaveChanges = 1 ' Ask the user
smoSaveChanges = 2 ' Save without asking
Return type:
none
Example:

' Close the active window without saving it
tm.ActiveWindow.Close smoDoNotSaveChanges

View (object)

Access paths:

BasicMaker and TextMaker

= Application 2 Windows = Item = View

= Application 2 ActiveWindow = View

= Application 2 Documents = Item = ActiveWindow = View
= Application 2 ActiveDocument = ActiveWindow = View

n Description

The View object contains a range of settings for the presentation on screen. It is a child object of the Window
object.

Note: The presentation settings provided by the View object are specific to the document window — i.e., each
document window has its own settings. The global settings (valid for all documents) can be found in the objects
Application and Options.

ﬂ Access to the object

Each document window has exactly one instance of the View object. It is accessed through the object pointer
View in the Window object:

' Show all special characters (tabs, etc.) in the active window
tm.ActiveWindow.View.ShowAll = True

ﬂ Properties, objects, collections and methods

Properties:

= Type

= Mode

FieldShading
HighlightComments
RevisionsBalloonSide
RevisionsBalloonWidth
CommentsPaneAutoShow
ShowHiddenText
PrintHiddenText
ShowParagraphs
ShowSpaces

ShowTabs

ShowAll
ShowBookmarks
ShowTextBoundaries
WrapToWindow

Objects:

= Zoom — Zoom

= Application — Application
= Parent - Window

BasicMaker and TextMaker

Type (property)
Data type: Long (TmViewType)

Gets or sets the view type of the document window. The possible values are:

tmPrintView = 0 ' Normal view
tmMasterView = 1 ' Master page view
tmNormalView = 2 ' Concept view
tmOutlineView = 3 ' Outline view
Mode (property)

Data type: Long (TmViewMode)

Gets or sets the view mode of the document window. The possible values are:

tmViewModeText = 0 ' Editing mode
tmViewModeObject = 1 ' Object mode

If you set this property to tmViewModeObject while the document window view (see above) is set to
tmNormalView (ribbon command View group | Views | Concept) or tmOutlineView (ribbon command View
| Views group | Outline), TextMaker automatically switches to tmPrintView because object mode is not
available in these views.

FieldShading (property)
Data type: Long (TmFieldShading)

Gets or sets the setting "Shade fields" on the View tab in the dialog box of the ribbon command File |
Properties. The possible values are:

tmFieldShadingNever = 0 ' Do not shade fields in gray
tmFieldShadingAlways = 1 ' Shade fields in gray

HighlightComments (property)

Data type: Boolean

Gets or sets the property of the document window whether comments in the document are color-highlighted
(True or False).

RevisionsBalloonSide (property)

Data type: Long (TmRevisionsBalloonMargin)

Gets or sets the position where comments appear inside the document window. The possible values are:

tmRightMargin = 0 ' right

BasicMaker and TextMaker

tmLeftMargin =1 ' left
tmOuterMargin = 2 ' outside
tmInnerMargin = 3 ' inside

RevisionsBalloonWidth (property)

Data type: Long

Gets or sets the width of the comment field in the document window, measured in points (1 point corresponds
to 1/72 inches).

CommentsPaneAutoShow (property)

Data type: Boolean

Gets or sets the setting of the document window whether the comment field should be automatically shown
(True or False).

ShowHiddenText (property)

Data type: Boolean

Gets or sets the setting of the document window whether hidden text should be shown or not (True or False).

PrintHiddenText (property)

Data type: Boolean

Gets or sets the setting of the document window whether hidden text should be printed or not (True or False).

ShowParagraphs (property)

Data type: Boolean

Gets or sets the setting of the document window whether paragraph marks () should be shown or not (True or
False).

ShowSpaces (property)

Data type: Boolean

Gets or sets the setting of the document window whether space characters should be displayed with a small
point (-) or not (True or False).

ShowTabs (property)

Data type: Boolean

BasicMaker and TextMaker

Gets or sets the setting of the document window whether tab stops should be displayed with an arrow (—) or
not (True or False).

ShowAll (property)
Data type: Boolean

Gets or sets the setting of the document window whether all unprintable characters (paragraph signs, tab stops,
space characters) should be displayed or not (True or False).

ShowBookmarks (property)

Data type: Boolean

Gets or sets the setting of the document window whether bookmarks should be shown or not (True or False).

ShowTextBoundaries (property)

Data type: Boolean

Gets or sets the setting of the document whether the page borders should be displayed as dotted lines or not
(True or False).

WrapToWindow (property)

Data type: Boolean

Gets or sets the setting of the document window whether the text should be wrapped at the window border or
not (True or False).

Zoom (pointer to object)
Data type: Object

Returns the Zoom object which contains the zoom level setting of the document window.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Window.

BasicMaker and TextMaker

Zoom (object)

Access paths:

= Application =2 Windows = Item = View = Zoom

= Application = ActiveWindow = View = Zoom

= Application = Documents = Item = ActiveWindow = View = Zoom
= Application = ActiveDocument = ActiveWindow = View = Zoom

ﬂ Description

The Zoom object contains the settings for the zoom level of a document window. It is a child object of the
View object.

ﬂ Access to the object

Each document window has exactly one instance of the View object and this has in turn exactly one instance of
the Zoom object. The latter is accessed through the object pointer Zoom in the View object:

' Zoom the document window to 140%
tm.ActiveWindow.View.Zoom.Percentage = 200

ﬂ Properties, objects, collections and methods

Properties:
= Percentage

Objects:
= Application — Application
= Parent - View

Percentage (property)
Data type: Long

Gets or sets the zoom level of the document window, expressed in percent.

Example:

' Zoom the document window to 140%
tm.ActiveWindow.View.Zoom.Percentage = 140

Application (pointer to object)

Data type: Object

BasicMaker and TextMaker

Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type View.

RecentFiles (collection)

Access path: Application > RecentFiles

ﬂ Description

RecentFiles is a collection of all recently opened files listed in the File menu. The individual elements of this
collection are of the type RecentFile.

ﬂ Access to the collection

There is exactly one instance of the RecentFiles collection during the whole runtime of TextMaker. It is
accessed directly through the Application.RecentFiles object:

' Show the name of the first recent file in the File menu
MsgBox tm.Application.RecentFiles.Item(1l) .Name

' Open the first recent file in the File menu
tm.Application.RecentFiles.Item (1) .Open

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O
= Maximum

Objects:

= Item — RecentFile (default object)
= Application — Application

= Parent — Application

Methods:
= Add

BasicMaker and TextMaker

Count (property, R/0)
Data type: Long

Returns the number of RecentFile objects in TextMaker — in other words: the number of the recently opened
files listed in the File menu.

Maximum (property, R/0)
Data type: Long

Gets or sets the setting "Recently used files in File menu" — in other words: the number of recently opened files
that can be displayed in the File menu.

The value may be between 0 and 9.

Item (pointer to object)
Data type: Object
Returns an individual RecentFile object, i.e. one individual file entry in the File menu.

Which RecentFile object you get depends on the numeric value that you pass to Item: 1 for the first of the
recently opened files, 2 for the second, etc.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object
Returns the parent object, i.e. Application.

Add (method)
Adds a document to the list of recently opened files.

Syntax:

Add Document, [FileFormat]
Parameters:

Document is a string containing the file path and name of the document to be added.

BasicMaker and TextMaker

FileFormat (optional; type: Long or TmSaveFormat) specifies the file format of the document to be
added. The possible values are:

tmFormatDocument = 0 ' TextMaker document

tmFormatTemplate = 1 ' TextMaker document template
tmFormatWinWord97 = 2 ' Microsoft Word 97 and 2000
tmFormatOpenDocument = 3 ' OpenDocument, OpenOffice.org, StarOffice
tmFormatRTF = 4 ' Rich Text Format

tmFormatPocketWordPPC = 5 ' Pocket Word for Pocket PCs
tmFormatPocketWordHPC = 6 ' Pocket Word for Handheld PCs (Windows CE)
tmFormatPlainTextAnsi = 7 ' Text file with Windows character set
tmFormatPlainTextDOS = 8 ' Text file with DOS character set
tmFormatPlainTextUnicode = 9 ' Text file with Unicode character set
tmFormatPlainTextUTF8 = 10 ' Text file with UTF8 character set
tmFormatHTML = 12 ' HTML document

tmFormatWinWord6 = 13 ' Microsoft Word 6.0
tmFormatPlainTextUnix 14 ' Text file for UNIX, Linux, FreeBSD
tmFormatWinWordXP 15 ' Microsoft Word XP and 2003
tmFormatTM2006 = 16 ' TextMaker 2006 document

tmFormatOpenXML = 17 ' Microsoft Word 2007 and later

tmFormatTM2008 = 18 ' TextMaker 2008 document

tmFormatOpenXMLTemplate = 22 ' Microsoft Word document template 2007 and
later

tmFormatWinWordXPTemplate = 23 ' Microsoft Word document template XP and 2003

tmFormatTM2012 = 27 ' TextMaker 2012 document
tmFormatTM2016 = 28 ' TextMaker 2016 document
tmFormatTM2016Template = 29 ' TextMaker 2016 document template

If you omit this parameter, the value tmFormatDocument will be assumed.

Tip: Independent of the value for the FileFormat parameter, TextMaker always tries to determine the
file format by itself and ignores evidently false inputs.

Return type:
Object (a RecentFile object which represents the added document)

Example:

' Add the file Test.rtf to the File menu
tm.Application.RecentFiles.Add "Test.rtf", tmFormatRTF

' Do the same, but evaluate the return value (mind the parentheses!)
Dim fileObj as Object

Set fileObj = tm.Application.RecentFiles.Add("Test.rtf", tmFormatRTF)
MsgBox fileObj.Name

RecentFile (object)

Access path: Application > RecentFiles 2 Item

BasicMaker and TextMaker

n Description

A RecentFile object represents one individual of the recently opened files. You can use it to retrieve the
properties of such a file and to open it again.

An individual RecentFile object exists for each recently opened file. For each document that you open or close,
the list of these files in the File menu will change accordingly — i.e., the respective RecentFile objects will be
created or deleted dynamically.

ﬂ Access to the object

The individual RecentFile objects can be accessed solely through enumerating the elements of the collection
RecentFiles. You can access it through Applications.RecentFiles.

' Show the name of the first file in the File menu
MsgBox tm.Application.RecentFiles.Item(1l) .Name

ﬂ Properties, objects, collections and methods

Properties:

* FullName R/O

= Name R/O (default property)
= Path R/O

Objects:

= Application — Application
= Parent — RecentFiles
Methods:

= Open

FullName (property, R/0)
Data type: String

Returns the path and name of the document in the File menu (e.g., "c:\Letters\Smith.tmdx").

Name (property, R/0)
Data type: String

Returns the name of the document (e.g. "Smith.tmdx").

Path (property, R/0)
Data type: String

BasicMaker and TextMaker

Returns the path of the document (e.g. "c:\Letters").

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object
Returns the parent object, i.e. Application.

Open (method)

Opens the related document and returns it as a Document object.
Syntax:
Open
Parameters:
none
Return type:
Document

Example:

' Open the first document displayed in the File menu
tm.Application.RecentFiles (1) .Open

FontNames (collection)

Access path: Application > FontNames

n Description

FontNames is a collection of all fonts installed in Windows. The individual elements of this collection are of
the type FontName.

BasicMaker and TextMaker

ﬂ Access to the collection

There is exactly one instance of the FontNames collection during the whole runtime of TextMaker. It is
accessed through Application.FontNames:

' Display the name of the first installed font
MsgBox tm.Application.FontNames.Item(1l) .Name

' The same, but shorter, omitting the default properties:
MsgBox tm.FontNames (1)

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Item — FontName (default object)
= Application — Application

= Parent — Application

Count (property, R/0)
Data type: Long

Returns the number of FontName objects in TextMaker — in other words: the number of fonts installed in
Windows.

Item (pointer to object)

Data type: Object
Returns an individual FontName object, i.e. an individual installed font.

Which FontName object you get depends on the numeric value that you pass to Item: 1 for the first installed
font, 2 for the second, etc.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Returns the parent object, i.e. Application.

BasicMaker and TextMaker

FontName (object)

Access path: Application - FontNames = Item

ﬂ Description

A FontName object represents one individual font of the fonts installed in Windows. An individual FontName
object exists for each installed font.

ﬂ Access to the object

The individual FontName objects can be accessed solely through enumerating the elements of the collection
FontNames. You can access it through Applications.FontNames.

' Display the name of the first installed font
MsgBox tm.Application.FontNames.Item(1l) .Name

' The same, but shorter, omitting the default properties:
MsgBox tm.FontNames (1)

ﬂ Properties, objects, collections and methods

Properties:
= Name R/O (default property)
= Charset

Objects:
= Application — Application
= Parent — FontNames

Name (property, R/0)

Data type: String

Returns the name of the respective font.

Charset (property, R/0)
Data type: Long (SmoCharset)

Returns the character set of the respective font. The possible values are:

smoAnsiCharset = 0 ' normal character set
smoSymbolCharset = 2 ' symbol font

BasicMaker and TextMaker

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.c. FontNames.

BasicMaker and PlanMaker

BasicMaker and PlanMaker

You can use BasicMaker to program the spreadsheet application PlanMaker in the same way that you can
program TextMaker. This chapter contains all the information about programming PlanMaker. It contains the
following sections:

= Programming PlanMaker

This section contains all the basic information required to program PlanMaker with BasicMaker.

= PlanMaker's object model

This chapter describes all objects exposed by PlanMaker for programming.

Programming PlanMaker

Programming the word processor TextMaker and the spreadsheet program PlanMaker is practically identical.
The only difference is that some keywords have different names (for example PlanMaker.Application instead of
TextMaker.Application). If you have already worked through the section Programming TextMaker you will
notice that the section you are currently reading is almost identical to it.

Naturally, the objects exposed by PlanMaker are different from those of TextMaker. A list of all objects
exposed can be found in the next section, PlanMaker's object model.

To program PlanMaker with BasicMaker, you mainly use OLE Automation commands. General information on
this subject can be found in section OLE Automation.

Follow this schematic outline (see below for details):
1. Declare a variable of type Object:
Dim pm as Object

2. Make a connection to PlanMaker via OLE Automation (PlanMaker will be launched automatically if it is
not already running):

Set pm = CreateObject ("PlanMaker.Application")
3. Set the property Application.Visible to True so that PlanMaker becomes visible:
pm.Application.Visible = True

4. Now you can program PlanMaker by reading and writing its "properties" and by invoking the "methods" it
provides.

5. As soon as the PlanMaker object is not required anymore, you should cut the connection to PlanMaker:

Set pm = Nothing

BasicMaker and PlanMaker

This was just a quick rundown of the necessary steps. More detailed information on programming PlanMaker
follows on the next pages. A list of all PlanMaker objects and their respective properties and methods can be
found in the section PlanMaker's object model.

Connecting to PlanMaker

In order to control PlanMaker from BasicMaker, you first need to connect to PlanMaker via OLE Automation.
For this, first declare a variable of type Object, then assign to it the object "PlanMaker.Application" through
use of the CreateObject function.

Dim pm as Object
Set pm = CreateObject("PlanMaker.Application")

If PlanMaker is already running, this function simply connects to PlanMaker; if not, then PlanMaker will be
started beforehand.

The object variable "pm" now contains a reference to PlanMaker.
) p

Important: Making PlanMaker visible

Please note: If you start PlanMaker in the way just described, its application window will be invisible by
default. In order to make it visible, you must set the property Visible to True. The complete chain of commands
should therefore be as follows:

Dim pm as Object
Set pm = CreateObject ("PlanMaker.Application")
pm.Application.Visible = True

The "Application" object

The fundamental object that PlanMaker exposes for programming is Application. All other objects — such as
collections of open documents and windows — are attached to the Application object.

The Application object contains not only its own properties (such as Application.Left for the x coordinate of
the application window) and methods (such as Application.Quit for exiting from PlanMaker), but also contains
pointers to other objects, for example Application.Options, that in turn have their own properties and methods
and pointers to collections such as Workbooks (the collection of all currently open documents).

Notations

As mentioned in the previous section, you need to use dot notation as usual with OLE Automation to access the
provided properties, methods, etc.

For example, Application.Left lets you address the Left property of the Application object.
Application.Documents.Add references the Add method of the Documents collection which in turn is a
member of Application.

BasicMaker and PlanMaker

Getting and setting PlanMaker properties

As soon as a connection with PlanMaker has been made, you can "control" the application. For this, properties
and methods are provided — this has already been discussed in the section OLE Automation.

Let's first talk about properties. Properties are options and settings that can be retrieved and sometimes

modified.

For example, if you wish to retrieve PlanMaker's application name, you can use the Name property of the
Application object:

MsgBox "The name of this application is: " & pm.Application.Name

Application.Name is a property that can only be read, but not written to. Other properties can be both retrieved
and changed from BasicMaker scripts. For example, the coordinates of the PlanMaker application window are
stored in the properties Left, Top, Width and Height. You can retrieve them as follows:

MsgBox "The left window position is at: " & tm.Application.Left
But you can also change the content of this property:
pm.Application.Left = 200

PlanMaker reacts immediately and moves the left border of the application window to the pixel position 200.
You can also mix reading and changing the values of properties, as in the following example:

pm.Application.Left = pm.Application.Left + 100

Here, the current left border value is retrieved, increased by 100 and set as the new value for the left border.
This will instruct PlanMaker to move its left window position 100 pixels to the right.

There is a large number of properties in the Application object. A list of them can be found in the section
PlanMaker's object model.

Using PlanMaker’s methods

In addition to properties, there are methods, and they implement commands that direct PlanMaker to execute a
specific action.

For example, Application.Quit instructs PlanMaker to stop running and Application.Activate lets you force
PlanMaker to bring its application window to the foreground, if it's covered by windows from other
applications:

pm.Application.Activate

BasicMaker and PlanMaker

Function methods and procedure methods

There are two types of methods: those that return a value to the BASIC program and those that do not. The
former are called (in the style of other programming languages) "function methods" or simply "functions", the
latter "procedure methods" or simply "procedures".

This distinction may sound a bit picky to you, but it is not because it effects on the notation of instructions.
As long as you call a method without parameters, there is no syntactical difference:

Call as procedure:

pm.Workbooks.Add ' Add a document to the collection of open documents

Call as function:

Dim newDoc as Object
Set newDoc = pm.Workbooks.Add ' The same (returning an object this time)

As soon as you access methods with parameters, you need to employ two different styles:
Call as procedure:
pm.Application.RecentFiles.Add "Test.pmdx"

Call as function:

Dim x as Object
Set x = pm.Application.RecentFiles.Add("Test.pmdx") ' now with a return value

As you can see, if you call the method as a procedure, you may not surround the parameters with parentheses. If
you call it as a function, you must surround them with parentheses.

Using pointers to other objects

A third group of members of the Application object are pointers to other objects.

This may first sound a bit abstract at first, but is actually quite simple: It would clutter the Application object if
all properties and methods of TextMaker were attached directly to the Application method. To prevent this,
groups of related properties and methods have been parceled out and placed into objects of their own. For
example, PlanMaker has an Options object that lets you retrieve and set many fundamental program settings:

pm.Application.Options.CreateBackup = True

MsgBox "Overwrite mode activated? " & pm.Application.Options.Overtype

Using collections

The fourth group of members of the Application object are pointers to collections.

BasicMaker and PlanMaker

Collections are, as their name indicates, lists of objects belonging together. For example, there is a collection
called Application.Workbooks that contains all open documents and a collection called
Application.RecentFiles with all files that are listed in the history section of the File menu.

There are two standardized ways of accessing collections and PlanMaker supports both. The more simple way
is through the Item property that is part of every collection:

' Display the name of the first open document:
MsgBox pm.Application.Workbooks.Item(1l) .Name

' Close the (open) document "Test.pmdx":
pm.Application.Workbooks.Item("Test.pmdx") .Close

If you wish to list all open documents, for example, first find out the number of open documents through the
standardized Count property, then access the objects one by one:

' Return the names of all open documents:

For 1 = 1 To pm.Application.Workbooks.Count
MsgBox pm.Application.Workbooks.Item (i) .Name

Next i

Every collection contains, by definition, the Count property which lets you retrieve the number of entries in the
collection and the Item property that lets you directly access one entry.

Item always accepts the number of the desired entry as an argument. Where it makes sense, it is also possible to
pass other arguments to Item, for example file names. You have seen this already above, when we passed both
a number and a file name to Item.

For most collections, there is a matching object type for their individual entries. The collection Windows, for
example, an individual entry that is returned by Item is of the type Window — note the use of the singular! One
entry of the Workbooks collection is called Workbook, and an entry of the RecentFiles collection is called
RecentFile.

A more elegant approach to collections: For Each ... Next

There is a more elegant way to access all entries in a collection consecutively: BasicMaker also supports the
For Each statement:

' Display the names of all open documents
Dim x As Object

For Each x In pm.Application.Workbooks
MsgBox x.Name
Next x

This gives the same results as the method previously described:

For 1 = 1 To pm.Application.Workbooks.Count
MsgBox pm.Application.Workbooks.Item (i) .Name
Next i

Additional properties and methods of collections

Some collections may have their own properties and methods, in addition to the standard members Item and
Count. For example, if you wish to create an empty document in PlanMaker, this is achieved by adding a new
entry to its Workbooks collection:

BasicMaker and PlanMaker

pm.Application.Workbooks.Add ' create empty document

Hints for simplifying notations

If you are beginning to wonder whether so much typing is really necessary to address a single document, we can
reassure you that it's not! There are several ways to reduce the amount of typing required.

Using the With statement
The first shortcut is to use the With statement when addressing multiple members of the same object.

First, the conventional style:

pm.Application.Left = 100
pm.Application.Top = 50
pm.Application.Width = 500
pm.Application.Height = 300

MsgBox pm.Application.Options.CreateBackup

This code looks much clearer through use of the With statement:

With pm.Application

.Left = 100

.Top = 50

.Width = 500

.Height = 300

MsgBox .Options.CreateBackup
End With

Save time by omitting default properties

There is yet another way to reduce the amount of typing required: Each object (for example, Application or
Application.Workbooks) has one of its properties marked as its default property. Conveniently enough, you
can always leave out default properties.

The default property of Application, for example, is Name. Therefore, the two following instructions are

equivalent:
MsgBox pm.Application.Name ' displays the application name of PlanMaker
MsgBox pm.Application ' does exactly the same

Typically, the property that is used most often in an object has been designated its default property. For
example, the most used property of a collection surely is the Item property, as the most common use of
collections is to return one of their members. The following statements therefore are equivalent:

MsgBox pm.Application.Workbooks.Item (1) .Name

MsgBox pm.Application.Workbooks (1) .Name

Finally things are getting easier again! But it gets even better: Name is the default property of a single
Workbook object (note: "Workbook", not "Workbooks"!). Each Item of the Workbook collection is of the
Workbook type. As Name is the default property of Document, it can be omitted:

BasicMaker and PlanMaker

MsgBox pm.Application.Workbooks (1)

Not easy enough yet? OK... Application is the default property of PlanMaker. So, let's just leave out
Application as well! The result:

MsgBox pm.Workbooks (1)

This basic knowledge should have prepared you to understand PlanMaker's object model. You can now
continue with the next section that contains a detailed list of all objects that PlanMaker provides.

PlanMaker's object model

PlanMaker provides BasicMaker (and all other OLE Automation compatible programming languages) with the
objects listed below.

Notes:
= Properties marked with "R/O" are "Read Only" (i.e. write-protected). They can be read, but not changed.
= The default property of an object is marked in italics.

The following table lists all objects and collections available in PlanMaker:

Name Type Description

Application Object "Root object" of PlanMaker

Options Object Global options

UserProperties Collection Collection of all components of the user's address

UserProperty Object An individual component of the user's address

CommandBars Collection Collection of all toolbars (toolbars work only in classic mode; they do not work
with ribbons)

CommandBar Object A single toolbar (toolbars work only in classic mode; they do not work with
ribbons)

AutoCorrect Object Automatic text correction and SmartText

AutoCorrectEntries Collection Collection of all SmartText entries

AutoCorrectEntry Object An individual SmartText entry

Workbooks Collection Collection of all open documents (workbooks)

Workbook Object An individual open document

DocumentPropertie Collection Collection of all document properties of a document

N

BasicMaker and PlanMaker

Name Type Description

DocumentProperty Object An individual document property

Sheets Collection Collection of all worksheets of a document

Sheet Object An individual worksheet of a document

PageSetup Object The page settings of a worksheet

Range Object A range of cells in a worksheet

Rows Collection Collection of all rows in a worksheet or range

Columns Collection Collection of all columns in a worksheet or range
NumberFormatting Object The number formatting of a range

Font Object The character formatting of a range or conditional formatting
Borders Collection Collection of all border lines of a range or conditional formatting
Border Object An individual border line

Shading Object The shading of a range or conditional formatting

Validation Object The input validation settings of a range

AutoFilter Object The AutoFilter of a worksheet

Filters Collection Collection of all columns in an AutoFilter

Filter Object An individual column in an AutoFilter

Windows Collection Collection of all open document windows

Window Object An individual document window

RecentFiles Collection Collection of all recently opened files, as listed in the File menu
RecentFile Object An individual recently opened file

FontNames Collection Collection of all installed fonts

FontName Object An individual installed font

Detailed descriptions of all objects and collections follow on the next pages.

BasicMaker and PlanMaker

Application (object)

Access path: Application

ﬂ Description

Application is the "root object" for all other objects in PlanMaker. It is the central control object that is used to
carry out the whole communication between your Basic script and PlanMaker.

ﬂ Access to the object

There is exactly one instance of the Application object. It is available during the whole time that PlanMaker is
running and accessed directly through the object variable returned by the CreateObject function:

Set pm = CreateObject ("PlanMaker.Application")
MsgBox pm.Application.Name

As Application is the default property of PlanMaker, it can generally be omitted:

Set pm = CreateObject ("PlanMaker.Application")
MsgBox pm.Name ' has the same meaning as pm.Application.Name

ﬂ Properties, objects, collections and methods

Properties:

= FullName R/O

= Name R/O (default property)
= Path R/O

= Build R/O

= Bits R/O

= Visible

= Caption R/O

= Left

= Top

* Width

= Height

= WindowState

= Calculation

= CalculateBeforeSave

= DisplayCommentIndicator
= EditDirectlyInCell

= MoveAfterReturn

= MoveAfterReturnDirection
* PromptForSummarylInfo
= WarningOnError

BasicMaker and PlanMaker

Objects:

= Options — Options

= UserProperties - UserProperties
= CommandBars - CommandBars
= AutoCorrect > AutoCorrect

= ActiveWorkbook — Workbook

= ActiveSheet — Sheet

= ActiveWindow — Window

= ActiveCell > Range

= Selection — Range

= Range — Range

= Cells »> Range

= Application — Application

Collections:

* Workbooks — Workbooks
* Windows — Windows

= RecentFiles — RecentFiles
* FontNames — FontNames
= Columns — Columns

* Rows — Rows

Methods:

= CentimetersToPoints
= MillimetersToPoints
= InchesToPoints

= PicasToPoints

= LinesToPoints

= Activate

= Calculate

= Quit

FullName (property, R/0)
Data type: String
Returns the name and path of the program (e.g. "C:\Program Files\SoftMaker Office\PlanMaker.exe").

Name (property, R/0)
Data type: String

Returns the name of the program, i.e. "PlanMaker".

Path (property, R/0)
Data type: String
Returns the path of the program, for example "C:\Program Files\SoftMaker Office\".

BasicMaker and PlanMaker

Build (property, R/0)
Data type: String

Returns the build number of the program as a string, for example "1000".

Bits (property, R/0)
Data type: String

Returns a string corresponding to the bit version of the program: "32" for the 32-bit version, "64" for the 64-bit
version of PlanMaker.

Visible (property)
Data type: Boolean

Gets or sets the visibility of the program window:

True ' PlanMaker becomes visible
False ' PlanMaker becomes invisible

pm.Application.Visible
pm.Application.Visible

Important: By default, Visible is set to False — thus, PlanMaker is initially invisible until you explicitly
make it visible.

Caption (property, R/0)
Data type: String

Returns a string with the contents of the title bar of the program window (e.g. "PlanMaker - MyTable.pmdx").

Left (property)
Data type: Long

Gets or sets the horizontal position (= left edge) of the program window on the screen, measured in screen
pixels.

Top (property)
Data type: Long

Gets or sets the vertical position (= top edge) of the program window on the screen, measured in screen pixels.

Width (property)

Data type: Long

BasicMaker and PlanMaker

Gets or sets the width of the program window on the screen, measured in screen pixels.

Height (property)
Data type: Long

Gets or sets the height of the program window on the screen, measured in screen pixels.

WindowState (property)

Data type: Long (SmoWindowState)

Gets or sets the current state of the program window. The possible values are:

smoWindowStateNormal = 1 ' normal
smoWindowStateMinimize = 2 ' minimized
smoWindowStateMaximize = 3 ' maximized
Calculation (property)

Data type: Long (PmCalculation)

Gets or sets the setting whether documents should be recalculated automatically or manually. The possible
values are:

pmCalculationAutomatic = 0 ' Update calculations automatically
pmCalculationManual 1 ' Update calculations manually

Notes:

= PlanMaker allows you to apply this setting per document, whereas it is a global setting in Excel. This
property is supported by PlanMaker only for compatibility reasons. It is recommended to use the identically
named property Calculation in the Workbook object instead, as it allows you to change this setting for
each document individually.

= If you retrieve this property while multiple documents are open where this setting has different values, the
value smoUndefined will be returned.

CalculateBeforeSave (property)
Data type: Boolean
Gets or sets the setting whether documents should be recalculated when it is saved.

Notes:

= This property has an effect only if calculations are set to be updated manually. If the Calculation property
(see there) is set to pmCalculationAutomatic, all calculations will always be kept up-to-date anyway.

= PlanMaker allows you to apply this setting per document, whereas it is a global setting in Excel. This
property is supported by PlanMaker only for compatibility reasons. It is recommended to use the identically

BasicMaker and PlanMaker

named property CalculateBeforeSave in the Workbook object instead, as it allows you to change this
setting for each document individually.

= If you retrieve this property while multiple documents are open where this setting has different values, the
value smoUndefined will be returned.

DisplayCommentindicator (property)

Data type: Long (PmCommentDisplayMode)

Gets or sets the mode in which comments are shown. The possible values are:

pmNoIndicator 0 ' Show neither comments nor yellow triangle
pmCommentIndicatorOnly = 1 ' Show only a yellow triangle
pmCommentOnly = 2 ' Show comments, but no yellow triangle
pmCommentAndIndicator = 3 ' Show both comments and triangle

Notes:

= PlanMaker allows you to apply this setting per document, whereas it is a global setting in Excel. This
property is supported by PlanMaker only for compatibility reasons. It is recommended to use the identically
named property DisplayCommentIndicator in the Workbook object instead, as it allows you to change
this setting for each document individually.

= If you retrieve this property while multiple documents are open where this setting has different values, the
value smoUndefined will be returned.

EditDirectlyinCell (property)

Data type: Boolean

Gets or sets the setting whether cells can be edited directly in the spreadsheet or only in the Edit bar displayed
above the spreadsheet.

MoveAfterReturn (property)

Data type: Boolean

Gets or sets the setting whether the cell frame should advance to another cell when the user presses the Enter
key.

If this property is set to True, the MoveAfterReturnDirection property (see there) will be automatically set to
pmDown. However, you can later choose a different direction.

MoveAfterReturnDirection (property)

Data type: Long (PmDirection)

Gets or sets the direction into which the cell frame should move when the user presses the Enter key. The
possible values are:

pmDown = 0 ' down

BasicMaker and PlanMaker

pmUp =1 "' up
pmToRight = 2 ' right
pmToLeft = 3 ' left

PromptForSummaryinfo (property)

Data type: Boolean

Gets or sets the setting "Ask for document info when saving", which can be found in PlanMaker on the Files
tab in the dialog box of the ribbon command File | Options.

WarningOnError (property)

Data type: Boolean

Gets or sets the setting "Warning if a formula contains errors", which can be found in PlanMaker on the Edit
tab in the dialog box of the ribbon command File | Options.

Options (pointer to object)

Data type: Object

Returns the Options object that you can use to access global program settings of PlanMaker.

UserProperties (pointer to object)

Data type: Object

Returns the UserProperties object that you can use to access the name and address of the user.

CommandBars (pointer to object)

Data type: Object
Returns the CommandBars object that you can use to access the toolbars of PlanMaker.

Note: Toolbars work only in classic mode. They do not work with ribbons.

AutoCorrect (pointer to object)

Data type: Object

Returns the AutoCorrect object that you can use to access the automatic correction settings of PlanMaker.

ActiveWorkbook (pointer to object)

Data type: Object

Returns the currently active Workbook object that you can use to access the active document.

BasicMaker and PlanMaker

ActiveSheet (pointer to object)

Data type: Object

Returns the currently active Sheet object that you can use to access the active worksheet of the active
document.

ActiveSheet is an abbreviation for the ActiveWorkbook.ActiveSheet. The following both calls have the same

meaning:

MsgBox pm.Application.ActiveWorkbook.ActiveSheet
MsgBox pm.Application.ActiveSheet

ActiveWindow (pointer to object)

Data type: Object

Returns the currently active Window object that you can use to access the active document window.

ActiveCell (pointer to object)

Data type: Object

Returns a Range object that represents the active cell in the current document window. You can use this object
to read and edit the formatting and content of the cell.

ActiveCell is an abbreviation for ActiveWindow.ActiveCell. The following both calls have the same meaning:

pm.Application.ActiveWindow.ActiveCell.Font.Size = 14
pm.Application.ActiveCell.Font.Size = 14

Please note that ActiveCell always returns just one single cell, even if a range of cells is selected in the
worksheet. After all, selected ranges have exactly one active cell as well. You can see that when you select cells
and then press the Enter key: a cell frame appears within to selection to indicate the active cell.

Selection (pointer to object)

Data type: Object

Returns a Range object that represents the selected cells in the active worksheet of the current document
window.

Selection is an abbreviation for ActiveWorkbook.ActiveSheet.Selection. The following both calls have the
same meaning:

pm.Application.ActiveWorkbook.ActiveSheet.Selection.Font.Size = 14
pm.Application.Selection.Font.Size = 14

BasicMaker and PlanMaker

Range (pointer to object)

Data type: Object

Based on the parameters passed, creates a Range object that refers to the active worksheet of the current
document and returns it. You can use this object to access the cells in a range and, for example, get or set their
values.

Syntax 1:
obj = Range (Celll)

Syntax 2:

obj Range (Celll, Cell2)
Parameters:

Celll (type: String) specifies either according to syntax 1 a cell range (then Cell2 must be omitted) or
according to syntax 2 the upper left corner of a range (then parameter Cell2 specifies the lower right
corner of the range).

Cell2 (optional; type: String) should be used only if Celll refers to an individual cell.

Examples for syntax 1:

Range ("A1:B20") ' Cells Al to B20
Range ("A1") ' Only cell Al

Range ("A:A") ' Column A as a whole

Range ("3:3") ' Row 3 as a whole

Range ("Summer") ' Named range "Summer"

Example for syntax 2:

Range ("A1", "B20") ' Cells Al to B20

Range is an abbreviation for ActiveWorkbook.ActiveSheet.Range. The following both calls have the same
meaning:

pm.Application.ActiveWorkbook.ActiveSheet.Range ("A1:B5") .Value = 42
pm.Application.Range ("A1:B5") .Value = 42

Cells (pointer to object)
Data type: Object
Returns a Range object that contains all cells of the current worksheet. This is useful for two applications:

= To apply an operation (e.g., formatting) to every cell of the worksheet:

' Make the whole active worksheet red
pm.Cells.Shading.ForegroundPatternColor = smoColorRed

= To address individual cells with loop variables instead of specifying the address as a string (such as "B5" for

the second column in the fifth row). To do this, use the Item property of the Range object that is addressed
through the Cells pointer:

BasicMaker and PlanMaker

' Fill the first 5 * 10 cells of the active worksheet with 42
Dim row, col as Integer
For row = 1 To 5
For col =1 to 10
pm.Cells.Item(row, col) .Value = 42
Next col
Next row

Cells is an abbreviation for ActiveSheet.Cells. The following both calls have the same meaning;:

pm.Application.ActiveSheet.Cells (1, 1) .Font.Size = 14
pm.Application.Cells (1, 1).Font.Size = 14

Application (pointer to object)

Returns the Application object, i.e. the pointer to itself. This object pointer is basically superfluous and only
provided for the sake of completeness.

Workbooks (pointer to collection)

Data type: Object

Returns the Workbooks collection, a collection of all currently opened documents.

Windows (pointer to collection)

Data type: Object

Returns the Windows collection, a collection of all currently open document windows.

RecentFiles (pointer to collection)

Data type: Object

Returns the RecentFiles collection, a collection of the recently opened documents (as displayed at the bottom
of PlanMaker's File menu).

FontNames (pointer to collection)

Data type: Object

Returns the FontNames collection, a collection of all installed fonts.

Columns (pointer to collection)

Data type: Object

Returns the Columns collection, a collection of all columns in the active worksheet.

BasicMaker and PlanMaker

Columns is an abbreviation for ActiveWorkbook.ActiveSheet.Columns. The following both calls have the
same meaning:

MsgBox pm.Application.ActiveWorkbook.ActiveSheet.Columns.Count
MsgBox pm.Application.Columns.Count

Rows (pointer to collection)
Data type: Object
Returns the Rows collection, a collection of all rows in the active worksheet.

Rows is an abbreviation for ActiveWorkbook.ActiveSheet.Rows. The following both calls have the same
meaning;:

MsgBox pm.Application.ActiveWorkbook.ActiveSheet.Rows.Count
MsgBox pm.Application.Rows.Count

CentimetersToPoints (method)

Converts the given value from centimeters (cm) to points (pt). This function is useful if you make calculations
in centimeters, but a PlanMaker function accepts only points as its measurement unit.

Syntax:

CentimetersToPoints (Centimeters)
Parameters:

Centimeters (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the top margin of the active worksheet to 3cm
pm.ActiveSheet.PageSetup.TopMargin = pm.Application.CentimetersToPoints (3)

MillimetersToPoints (method)

Converts the given value from millimeters (mm) to points (pt). This function is useful if you make calculations
in millimeters, but a PlanMaker function accepts only points as its measurement unit.

Syntax:

MillimetersToPoints (Millimeters)
Parameters:
Millimeters (type: Single) specifies the value to be converted.

Return type:

BasicMaker and PlanMaker

Single
Example:

' Set the top margin of the active worksheet to 30mm
pm.ActiveSheet.PageSetup.TopMargin = pm.Application.MillimetersToPoints (30)

InchesToPoints (method)

Converts the given value from inches (in) to points (pt). This function is useful if you make calculations in
inches, but a PlanMaker function accepts only points as its measurement unit.

Syntax:

InchesToPoints (Inches)
Parameters:

Inches (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the bottom margin of the active worksheet to 1 inch
pm.ActiveSheet.PageSetup.BottomMargin = pm.Application.InchesToPoints (1)

PicasToPoints (method)

Converts the given value from picas to points (pt). This function is useful if you make calculations in picas, but
a PlanMaker function accepts only points as its measurement unit.

Syntax:

PicasToPoints (Picas)
Parameters:

Picas (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the bottom margin of the active worksheet to 6 picas
pm.ActiveSheet.PageSetup.BottomMargin = pm.Application.PicasToPoints (6)

LinesToPoints (method)

Identical to the PicasToPoints method (see there).

BasicMaker and PlanMaker

Syntax:

LinesToPoints (Lines)
Parameters:

Lines (type: Single) specifies the value to be converted.
Return type:

Single
Example:

' Set the bottom margin of the active worksheet to 6 picas
pm.ActiveSheet.PageSetup.BottomMargin = pm.Application.LinesToPoints (6)

Activate (method)
Brings the program window to the foreground and sets the focus to it.
Syntax:
Activate
Parameters:
none
Return type:
none

Example:

' Bring PlanMaker to the foreground
pm.Application.Activate

Note: This command is only successful if Application.Visible = True.

Calculate (method)

Recalculates all currently open documents (similar to the ribbon command Formula | Update group | Update
data | Update calculations in PlanMaker, except that the ribbon command only recalculates the active
workbook).

Syntax:

Calculate
Parameters:

none
Return type:

none

BasicMaker and PlanMaker

Example:

' Recalculate all open workbooks (documents)
pm.Application.Calculate

Quit (method)
Ends the program.
Syntax:

Quit
Parameters:

none
Return type:

none

Example:

' End PlanMaker
pm.Application.Quit

If there are any unsaved documents open, the user will be asked if they should be saved. If you want to avoid
this question, you need to either close all opened documents in your program or set the property Saved for the
document to True (see Workbook).

Options (object)

Access path: Application > Options

n Description

The Options object consolidates many global program settings, most of which can be found in the dialog box
of the ribbon command File | Options in PlanMaker.

E Access to the object

There is exactly one instance of the Options object during the whole runtime of PlanMaker. It is accessed
through Application.Options:

Set pm = CreateObject ("PlanMaker.Application™")
pm.Application.Options.EnableSound = True

BasicMaker and PlanMaker

ﬂ Properties, objects, collections and methods

Properties:

= CheckSpellingAsYouType
= CreateBackup

= DefaultFilePath

* DefaultTemplatePath

= EnableSound

= Overtype

= Savelnterval

= SavePropertiesPrompt

= DefaultFileFormat

Objects:
= Application — Application
= Parent — Application (default object)

CheckSpellingAsYouType (property)
Data type: Boolean

Gets or sets the setting "Background spell-checking" (True or False).

CreateBackup (property)

Data type: Boolean

Gets or sets the setting "Create backup files" (True or False).

DefaultFilePath (property)
Data type: String
Gets or sets the file path used by default to save and open documents.

This is just a temporary setting: When you execute the ribbon commands File | Open or File | Save as the next
time, the path chosen here will appear in the dialog box. If the user changes the path, this path will then be the
new default file path.

DefaultTemplatePath (property)
Data type: String
Gets or sets the file path used by default to store document templates.

This setting is saved permanently. Each call to the ribbon command File | New lets you see the document
templates in the path given here.

BasicMaker and PlanMaker

EnableSound (property)
Data type: Boolean

Gets or sets the setting "Beep on errors" (True or False).

Overtype (property)
Data type: Boolean

Gets or sets Overwrite/Insert mode (True=Overwrite, False=Insert).

Savelnterval (property)

Data type: Long

Gets or sets the setting "Autosave documents every » minutes" (0=off).

SavePropertiesPrompt (property)
Data type: Boolean

Gets or sets the setting "Prompt for summary information when saving" (True or False).

DefaultFileFormat (property)

Data type: Long (PmDefaultFileFormat)

Gets or sets the standard file format in which PlanMaker saves newly created documents. Possible values:

pmDefaultFileFormatPlanMaker
pmDefaultFileFormatExcelXP
pmDefaultFileFormatOpenXML
pmDefaultFileFormatPlanMaker2012

PlanMaker (.pmdx)

Microsoft Excel XP/2003 (.xls)
Microsoft Office Open XML (.xlsx)
PlanMaker 2012 (.pmd)

DS w e O

A}
A}
A}
A}

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object
Returns the parent object, i.c. Application.

BasicMaker and PlanMaker

UserProperties (collection)

Access path: Application = UserProperties

ﬂ Description

The UserProperties collection contains all components of the user's address (as entered on the General tab in
the dialog box of the ribbon command File | Options).

The individual elements of this collection are of the type UserProperty.

E Access to the collection

There is exactly one instance of the UserProperties collection during the whole runtime of PlanMaker. It is
accessed through Application.UserProperties:

' Show the first UserProperty (the user's name)
MsgBox pm.Application.UserProperties.Item(1l) .Value

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — UserProperty (default object)
= Application — Application

= Parent — Application

Count (property, R/0)
Data type: Long

Returns the number of UserProperty objects in the collection, i.e. the number of components in the user's
address (name, street, etc.).

This value is constantly 18, since there are exactly 18 such elements.

Item (pointer to object)

Data type: Object

Returns an individual UserProperty object that you can use to get or set an individual component of the user's
address (name, street, etc.).

BasicMaker and PlanMaker

Which UserProperty object you get depends on the numeric value that you pass to Item. The following table
shows the admissible values:

smoUserDataTitle =1 ' Title
smoUserDataName = 2 ' Name
smoUserDataInitials = 3 ' Initials
smoUserDataCompany = 4 ' Company
smoUserDataDepartment = 5 ' Department
smoUserDataAddressl = 6 ' Address field 1
smoUserDataAddress2 = 7 ' Address field 2
smoUserDataZip = 8 ' Postal code
smoUserDataCity =9 ' City
smoUserDataCountry = 10 ' Country
smoUserDataPhonel = 11 ' Phone 1
smoUserDataPhone2 = 12 ' Phone 2
smoUserDataPhone3 = 13 ' Phone 3
smoUserDataFax = 14 ' Fax
smoUserDataEmaill = 15 ' E-mail address 1
smoUserDataEmail2 = 16 ' E-mail address 2
smoUserDataEmail3 = 17 ' E-mail address 3
smoUserDataWebsite = 18 ' Website

Examples:

' Show the name of the user
MsgBox pm.Application.UserProperties.Item(1l) .Value

' Change e-mail address 2 to test@example.com
With pm.Application

.UserProperties.Item(smoUserDataEmail2) .Value = "testlexample.com"
End With

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object
Returns the parent object, i.c. Application.

UserProperty (object)

Access path: Application = UserProperties = Item

BasicMaker and PlanMaker

n Description

A UserProperty object represents one individual component of the user's address (for example, the street or the
postal code).

An individual UserProperty object exists for each of these components. The number of these objects is
constant, since you cannot create new address components.

ﬂ Access to the object

The individual UserProperty objects can be accessed solely through enumerating the elements of the
Application.UserProperties collection. The type of this collection is UserProperties.

Example:

' Show the contents of the first address element (the name of the user)
MsgBox pm.Application.UserProperties.Item(1l) .Value

ﬂ Properties, objects, collections and methods

Properties:
= Value (default property)

Objects:
= Application — Application
= Parent — UserProperties

Value (property)
Data type: String

Gets or sets the contents of the address component. The following example sets the company name of the user:

Sub Example ()

Set pm = CreateObject ("PlanMaker.Application")

pm.UserProperties (smoUserDataCompany) .Value = "ACME Corporation"
End Sub

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

BasicMaker and PlanMaker

Returns the parent object, i.e. UserProperties.

CommandBars (collection)

Access path: Application > CommandBars

n Description

The CommandBars collection contains all of PlanMaker's toolbars. The individual elements of this collection
are of the type CommandBar.

Note: Toolbars work only in classic mode. They do not work with ribbons.

ﬂ Access to the collection

There is exactly one instance of the CommandBars collection during the whole runtime of PlanMaker. It is
accessed through Application.CommandBars:

' Show the name of the first toolbar
MsgBox pm.Application.CommandBars.Item(1l) .Name

' The same, but easier, using the default property
MsgBox pm.CommandBars (1)

ﬂ Properties, objects, collections and methods

Properties:

= Count R/O

= DisplayFonts

= DisplayTooltips

Objects:

= Item — CommandBar (default object)
= Application — Application

= Parent — Application

Count (property, R/0)
Data type: Long
Returns the number of CommandBar objects in the collection, i.e. the number of toolbars available.

Note: Toolbars work only in classic mode. They do not work with ribbons.

BasicMaker and PlanMaker

DisplayFonts (property)
Data type: Boolean

Gets or sets the setting "Show fonts in font lists" (True or False).

DisplayTooltips (property)
Data type: Boolean

Gets or sets the setting whether a tooltip should be displayed when the mouse cursor is pointed to a toolbar
button. Corresponds to the setting "Show tooltips" in the dialog box of PlanMaker's ribbon command Files |
Options.

Item (pointer to object)

Data type: Object

Returns an individual CommandBar object that you can use to access an individual toolbar.
Note: Toolbars work only in classic mode. They do not work with ribbons.

Which CommandBar object you get depends on the value that you pass to Item. You can specify either the
numeric index or the name of the desired toolbar. Examples:

' Make the first toolbar invisible
pm.Application.CommandBars.Item(1l) .Visible = False

' Make the toolbar named "Formatting" invisible
pm.Application.CommandBars.Item("Formatting") .Visible = False

Note: It is not advisable to hard-code the names of toolbars in your program, since these names are different in
each language that PlanMaker's user interface supports. For example, if you are using PlanMaker in English, the
format bar is not called "Format", but "Formatting".

Instead, it is recommended to use the following symbolic constants for toolbars:

pmBarStatusShort 1 ' Status bar (no documents open)
pmBarStandardShort = 2 ' Standard toolbar (no documents open)
pmBarStatus = 3 ' Status bar

pmBarStandard = 4 ' Standard toolbar
pmBarFormatting = 5 ' Formatting toolbar
pmBarObjects = 6 ' Objects toolbar

pmBarEdit = 7 ' Edit toolbar

pmBarOutliner = 8 ' Outliner toolbar

pmBarChart = 9 ' Chart toolbar
pmBarFormsEditing = 10 ' Forms toolbar

pmBarPicture = 11 ' Picture toolbar
pmBarFullscreen = 12 ' Full-screen toolbar

BasicMaker and PlanMaker

Application (pointer to object)
Data type: Object

Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.c. Application.

CommandBar (object)

Access path: Application 2 CommandBars - Item

ﬂ Description

A CommandBar object represents one individual toolbar in PlanMaker.

An individual CommandBar object exists for each toolbar. If you create new toolbars or delete them, the
respective CommandBar objects will be created or deleted dynamically.

Note: Toolbars work only in classic mode. They do not work with ribbons.

ﬂ Access to the object

The individual CommandBar objects can be accessed solely through enumerating the elements of the
Application.CommandBars collection. The type of this collection is CommandBars.

Example:

' Show the name of the first toolbar
MsgBox pm.Application.CommandBars.Item (1) .Name

' The same, but easier, using the default property
MsgBox pm.CommandBars (1)

ﬂ Properties, objects, collections and methods

Properties:
= Name (default property)
* Visible

Objects:

BasicMaker and PlanMaker

= Application — Application
= Parent - CommandBars

Name (property)
Data type: String
Gets or sets the name of the toolbar.

Note: Toolbars work only in classic mode. They do not work with ribbons.

Example:

' Show the name of the first toolbar
MsgBox pm.Application.CommandBars.Item(1l) .Name

Visible (property)

Data type: Boolean

Gets or sets the visibility of the toolbar.

Note: Toolbars work only in classic mode. They do not work with ribbons.

The following example makes the "Formatting" toolbar invisible:

Sub Example ()
Set pm = CreateObject ("PlanMaker.Application")
pm.Application.CommandBars.Item("Formatting") .Visible = False
End Sub

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.c. CommandBars.

AutoCorrect (object)

Access path: Application > AutoCorrect

BasicMaker and PlanMaker

n Description

The AutoCorrect object allows accessing the defined SmartText entries.

E Access to the object

There is exactly one instance of the AutoCorrect object during the whole runtime of PlanMaker. It is accessed
through Application.AutoCorrect:

' Show the number of SmartText entries
Set pm = CreateObject ("PlanMaker.Application")
MsgBox pm.Application.AutoCorrect.Entries.Count

ﬂ Properties, objects, collections and methods

Objects:
= Application — Application
= Parent — Application

Collections:
= Entries —> AutoCorrectEntries

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object
Returns the parent object, i.c. Application.

Entries (pointer to collection)

Data type: Object

Returns the AutoCorrectEntries collection which contains all of PlanMaker's SmartText entries.

AutoCorrectEntries (collection)

Access path: Application > AutoCorrect > Entries

BasicMaker and PlanMaker

n Description

The AutoCorrectEntries collection contains all SmartText entries defined in PlanMaker. The individual
elements of this collection are of the type AutoCorrectEntry.

E Access to the collection

There is exactly one instance of the AutoCorrectEntries collection during the whole runtime of PlanMaker. It
is accessed through Application.AutoCorrect.Entries:

A}

Create a SmartText entry named "sd" containing "sales department"
pm.Application.AutoCorrect.Entries.Add "sd", "sales department"

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — AutoCorrectEntry (default object)
= Application — Application

= Parent — AutoCorrect

Methods:
= Add

Count (property, R/0)
Data type: Long

Returns the number of AutoCorrectEntry objects, i.e. the number of the currently defined SmartText entries.

Item (pointer to object)
Data type: Object

Returns an individual AutoCorrectEntry object, i.e. the definition of an individual SmartText entry.

Which AutoCorrect object you get depends on the value that you pass to Item: either the numeric index or the
name of the requested SmartText entry. Examples:

' Show the contents of the first defined SmartText entry
MsgBox pm.Application.AutoCorrect.Entries.Item(1l) .Value

' Show the contents of the SmartText entry with the name "sd"
MsgBox pm.Application.AutoCorrect.Entries.Item("sd") .Value

BasicMaker and PlanMaker

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. AutoCorrect.

Add (method)

Add a new AutoCorrectEntry entry.
Syntax:

Add Name, Value
Parameters:

Name (type: String): The name of the new SmartText entry. If the name is empty or already exists, the
call to the method fails.

Value (type: String): The text for the new SmartText entry. If the passed string is empty, the call of the
method fails.

Return type:

Object (an AutoCorrectEntry object which represents the new SmartText entry)

Example:

' Create a SmartText entry named "sd" containing "sales department"
pm.Application.AutoCorrect.Entries.Add "sd", "sales department"

AutoCorrectEntry (object)

Access path: Application > AutoCorrect = Entries = Item

n Description

An AutoCorrectEntry object represents one individual SmartText entry, for example, "sd" for "sales
department".

An individual AutoCorrectEntry object exists for each SmartText entry. If you create SmartText entries or
delete them, the respective AutoCorrectEntry objects will be created or deleted dynamically.

BasicMaker and PlanMaker

ﬂ Access to the object

The individual AutoCorrectEntry objects can be accessed solely through enumerating the elements of the
collection Application.AutoCorrect.Entries. The type of this collection is AutoCorrectEntries.

Example:

' Show the name of the first SmartText entry
MsgBox pm.Application.AutoCorrect.Entries.Item(1l) .Name

ﬂ Properties, objects, collections and methods

Properties:
= Name (default property)
* Value

Objects:
= Application — Application
= Parent —> AutoCorrectEntries

Methods:
= Delete

Name (property)
Data type: String

Gets or sets the name of the SmartText entry (e.g. "sd").

Value (property)
Data type: String

Gets or sets the contents of the SmartText entry (e.g. "sales department").

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. AutoCorrectEntries.

BasicMaker and PlanMaker

Delete (method)

Deletes an AutoCorrectEntry object from the AutoCorrectEntries collection.

Syntax:
Delete

Parameters:
none

Return type:
none

Examples:

A}

Delete the first SmartText entry
pm.Application.AutoCorrect.Entries.Item(1l) .Delete

A}

Delete the SmartText entry with the name "sd"
pm.Application.AutoCorrect.Entries.Item("sd") .Delete

Workbooks (collection)

Access path: Application > Workbooks

ﬂ Description

The Workbooks collection contains all open documents. The individual elements of this collection are of the
type Workbook.

ﬂ Access to the collection

There is exactly one instance of the Workbooks collection during the whole runtime of PlanMaker. It is
accessed through Application.Workbooks:

A}

Show the number of open documents
MsgBox pm.Application.Workbooks.Count

A}

Show the name of the first open document
MsgBox pm.Application.Workbooks (1) .Name

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

BasicMaker and PlanMaker

Objects:

= Item — Workbook (default object)
= Application — Application

= Parent — Application

Methods:
= Add

= Open
= Close

Count (property, R/0)

Data type: Long

Returns the number of Workbook objects in the collection, i.e. the number of the currently open documents.

Item (pointer to object)
Data type: Object
Returns an individual Workbook object, i.e. an individual open document.

Which Workbook object you get depends on the value that you pass to Item. You can specify either the numeric
index or the name of the desired document. Examples:

' Show the name of the first document
MsgBox pm.Application.Workbooks.Item(1l) .FullName

' Show the name of the document "Test.pmdx" (if currently open)
MsgBox pm.Application.Workbooks.Item("Test.pmdx") .FullName

' You can also use the full name with path
MsgBox pm.Application.Workbooks.Item("c:\Documents\Test.pmdx") .FullName

Application (pointer to object)

Returns the Application object.

Parent (pointer to object)

Returns the parent object, i.c. Application.

Add (method)

Creates a new empty document, based either on the standard document template Normal.pmvx or any other
document template you specify.

Syntax:
Add [Template]

BasicMaker and PlanMaker

Parameters:

Template (optional; type: String): Path and file name of the document template on which your
document should be based. If omitted, the standard template Normal.pmvx will be used.

If you omit the path or give only a relative path, PlanMaker's default template path will be automatically
prefixed. If you omit the file extension .pmvx, it will be automatically added.

Return type:
Object (a Workbook object that represents the new document)

Example:

Sub Example ()
Dim pm as Object
Dim newDoc as Object
Set pm = CreateObject ("PlanMaker.Application")
pm.Visible = True
Set newDoc = pm.Workbooks.Add
MsgBox newDoc.Name
End Sub

You can use the Workbook object returned by the Add method like any other document. You can also ignore
the return value of Add and get the new document from ActiveWorkbook.

Open (method)
Opens an existing document.

Syntax:

Open FileName, [ReadOnly], [Format], [Password], [WritePassword], [Delimiter],
[TextMarker]

Parameters:
FileName (type: String): Path and file name of the document or document template to be opened.
ReadOnly (optional; type: Boolean): Indicates whether the document should be opened only for reading.

Format (optional; type: Long or PmSaveFormat): The file format of the document to be opened. The
possible values are:

pmFormatDocument = 0 ' PlanMaker document

pmFormatTemplate = 1 ' PlanMaker document template
pmFormatExcel97 = 2 ' Excel 97/2000/XP

pmFormatExcel5 = 3 ' Excel 5.0/7.0

pmFormatExcelTemplate = 4 ' Excel document template

pmFormatSYLK = 5 ' Sylk

pmFormatRTF = 6 ' Rich Text Format

pmFormatTextMaker = 7 ' TextMaker (= RTF)

pmFormatHTML = 8 ' HTML document

pmFormatdBaseDOS = 9 ' dBASE database with DOS character set
pmFormatdBaseAnsi = 10 ' dBASE database with Windows character set
pmFormatDIF = 11 ' Text file with Windows character set
pmFormatPlainTextAnsi = 12 ' Text file with Windows character set

BasicMaker and PlanMaker

pmFormatPlainTextDOS = 13 ' Text file with DOS character set

pmFormatPlainTextUnix 14 ' Text file with ANSI character set for UNIX,
Linux, FreeBSD

pmFormatPlainTextUnicode = 15 ' Text file with Unicode character set

pmFormatdBaseUnicode 18 ' dBASE database with Unicode character set

pmFormatPlainTextUTF8 = 21 ' Text file with UTF8 character set

pmFormatMSXML 23 ' Excel 2007 and later

pmFormatMSXMLTemplate 24 ' Excel document template 2007 and later

pmFormatPM2008 = 26 ' PlanMaker 2008 document

pmFormatPM2010 = 27 ' PlanMaker 2010 document
pmFormatPM2012 = 28 ' PlanMaker 2012 document
pmFormatPM2012Template = 29 ' PlanMaker 2012 document template

If you omit this parameter, the value pmFormatDocument will be assumed.

Tip: Independent of the value for the FileFormat parameter PlanMaker always tries to determine the file
format by itself and ignores evidently false inputs.

Password (optional; type: String): The read password for password-protected documents. If you omit
this parameter for a password-protected document, the user will be asked to input the read password.

WritePassword (optional; type: String): The write password for password-protected documents. If you
omit this parameter for a password-protected document, the user will be asked to input the write
password.

Delimiter (optional; type: String): Indicates the text delimiter (for text file formats), for example,
comma or semicolon. If you omit this parameter, tabs will be used as a delimiter.

TextMarker (optional; type: Long or PmImportTextMarker): Indicates the characters the individual
text fields are enclosed with (for text file formats). The possible values are:

pmImportTextMarkerNone = 0 ' No marker
pmImportTextMarkerApostrophe = 1 ' Apostrophe marks
pmImportTextMarkerQmark 2 ' Quotation marks

Return type:
Object (a workbook object that represents the opened document)

Examples:

' Open a document
pm.Workbooks.Open "c:\docs\test.pmdx"

' Open a document only for reading
pm.Documents.Open "c:\docs\Test.pmdx", True

Close (method)

Closes all currently open documents.

Syntax:

Close [SaveChanges]

Parameters:

BasicMaker and PlanMaker

SaveChanges (optional; type: Long or SmoSaveOptions) indicates whether the documents which were
changed since they were last saved should be saved or not. If you omit this parameter, the user will be
asked to indicate it (if necessary). The possible values for SaveChanges are:

smoDoNotSaveChanges = 0 ' Don't ask, don't save
smoPromptToSaveChanges = 1 ' Ask the user
smoSaveChanges = 2 ' Save without asking
Return type:
none
Example:

A}

Close all open documents without saving them
pm.Workbooks.Close smoDoNotSaveChanges

Workbook (object)

Access paths:

= Application = Workbooks = Item

= Application > ActiveWorkbook

= Application =2 Windows = Item - Workbook
= Application = ActiveWindow = Workbook

ﬂ Description

A Workbook object represents one individual document opened in PlanMaker.

For each document there is its own Workbook object. If you open or close documents, the respective
Workbook objects will be created or deleted dynamically.

E Access to the object

The individual Workbook objects can be accessed in the following ways:
= All open documents are managed in the Application.Workbooks collection (type: Workbooks):

A}

Show the names of all open documents

For i = 1 To pm.Application.Workbooks.Count
MsgBox pm.Application.Workbooks.Item (i) .Name

Next 1

= The active document can be accessed through Application.ActiveWorkbook:

A}

Show the name of the current document
MsgBox pm.Application.ActiveWorkbook.Name

= Workbook is the Parent of the Sheets object, a collection of all worksheets in a document:

BasicMaker and PlanMaker

' Show the name of the current document in an indirect way
MsgBox pm.Application.ActiveWorkbook.Sheets.Parent.Name

= The Window object includes an object pointer to the document that belongs to it:

' Access the active document through the active document window
MsgBox pm.Application.ActiveWindow.Workbook.Name

B Properties, objects, collections and methods

Properties:

= Name R/O (default property)
= FullName R/O

= Path R/O

= Saved

= ReadOnly

= EnableCaretMovement

= ManualApply

= ScreenUpdate

= Calculation

= CalculateBeforeSave

= CalculateBeforeCopying

= CalculateBeforePrinting

= DisplayCommentIndicator
= FixedDecimal

= FixedDecimalPlaces

= Jteration

= MaxlIteration

= MaxChange

= ShowGuideLinesForTextFrames
= ShowHiddenObjects

= RoundFinalResults

= RoundIntermediateResults

Objects:

= ActiveSheet — Sheet

= ActiveWindow — Window

* BuiltInDocumentProperties - DocumentProperties
= Application — Application

= Parent - Workbooks

Collections:
= Sheets — Sheets

Methods:

= Activate
= Calculate
= Close

= Save

= SaveAs

BasicMaker and PlanMaker

= PrintOut

Name (property, R/0)
Data type: String

Returns the name of the document (e.g. ""Smith.pmdx").

FullName (property, R/0)

Data type: String

Returns the path and name of the document (e.g., "c:\Documents\Smith.pmdx").

Path (property, R/0)
Data type: String

Returns the path of the document (e.g. "c:\Documents").

Saved (property)

Data type: Boolean

Gets or sets the Saved property of the document. It indicates whether a document was changed since it was last
saved:

= If Saved is set to True, the document was not changed since it was last saved.

= If Saved is set to False, the document was changed since it was last saved. When closing the document, the
user will be asked if it should be saved.

ReadOnly (property)
Data type: Boolean
Gets or sets the ReadOnly property of the document.

If the property is True, the document is protected against user changes. Users will not be able to edit, delete, or
add content.

If you set this property to True, the EnableCaretMovement property (see there) will be automatically set to
False. Therefore, the text cursor cannot be moved inside the document anymore. However, you can always set
the EnableCaretMovement property to True if you want to make cursor movement possible.

EnableCaretMovement (property)

Data type: Boolean

Gets or sets the EnableCaretMovement property of the document. This property is sensible only in
combination with the ReadOnly property (see there).

BasicMaker and PlanMaker

If EnableCaretMovement is True, the text cursor can be moved freely inside a write-protected document. If it
is set to False, cursor movement is not possible.

ManualApply (property)
Data type: Boolean

Gets or sets the setting whether formatting changes made by your Basic script should be applied instantly or
not.

By default, this property is set to False, causing formatting commands like Range.Font.Size = 12 to be applied
instantly.

If you would like to apply a large number of formattings, you can set the ManualApply property to True. In
this case, PlanMaker accumulates all formatting commands until you invoke the Range.ApplyFormatting
method (see there). This leads to a speed advantage.

ScreenUpdate (property)
Data type: Boolean
Gets or sets the setting whether PlanMaker should update the display after each change.

If you set this property to False and then change the contents or formatting of cells, these changes will not be
shown on the screen until you set the property to True again. This can have a speed advantage if you change
many cells at once.

Calculation (property)

Data type: Long (PmCalculation)

Gets or sets the setting whether the document should be recalculated automatically or manually. The possible

values are:
pmCalculationAutomatic = 0 ' Update calculations automatically
pmCalculationManual = 1 ' Update calculations manually

CalculateBeforeSave (property)

Data type: Boolean
Gets or sets the setting whether the document should be recalculated when it is saved.

This property has an effect only if the document is set to be recalculated manually. If the Calculation property
(see there) is set to pmCalculationAutomatic, all calculations will always be kept up-to-date anyway.

CalculateBeforeCopying (property)

Data type: Boolean

Gets or sets the setting whether the document should be recalculated before copying or cutting cells.

BasicMaker and PlanMaker

This property has an effect only if the document is set to be recalculated manually. If the Calculation property
(see there) is set to pmCalculationAutomatic, all calculations will always be kept up-to-date anyway.

CalculateBeforePrinting (property)
Data type: Boolean
Gets or sets the setting whether the document should be recalculated before printing.

This property has an effect only if the document is set to be recalculated manually. If the Calculation property
(see there) is set to pmCalculationAutomatic, all calculations will always be kept up-to-date anyway.

DisplayCommentindicator (property)
Data type: Long (PmCommentDisplayMode)

Gets or sets the mode in which comments are shown. The possible values are:

pmNoIndicator 0 ' Show neither comments nor yellow triangle
pmCommentIndicatorOnly = 1 ' Show only a yellow triangle
pmCommentOnly = 2 ' Show comments, but no yellow triangle
pmCommentAndIndicator = 3 ' Show both comments and triangle

FixedDecimal (property)
Data type: Boolean

Gets or sets the setting whether the decimal separator should be automatically shifted after the input of
numbers.

The number of positions to shift the decimal separator is specified by the FixedDecimalPlaces property (see
there).

Example:

' Move the decimal separator 2 positions to the left after input
pm.ActiveWorkbook.FixedDecimal = True
pm.ActiveWorkbook.FixedDecimalPlaces = 2 ' 4235 will become 42.35
' Move the decimal separator 2 positions to the right after input

pm.ActiveWorkbook.FixedDecimal = True
pm.ActiveWorkbook.FixedDecimalPlaces = -2 ' 42 will become 4200

FixedDecimalPlaces (property)
Data type: Boolean
Gets or sets the number of positions to shift the decimal separator after the input of the numbers.

Note: This has no effect unless the FixedDecimal property (see there) is set to True.

BasicMaker and PlanMaker

Iteration (property)
Data type: Boolean

Gets or sets the setting "Use iterations" on the Calculate tab in the dialog box of the ribbon command File |
Properties.

If you enable this property, you should also specify values for the MaxChange and MaxlIteration properties
(see there).

MaxIteration (property)

Data type: Long

Gets or sets the setting "Maximum iterations" on the Calculate tab in the dialog box of the ribbon command
File | Properties. This only has an effect if the Iteration property (see there) is set to True.

MaxChange (property)
Data type: Long

Gets or sets the setting "Maximum change" (in iterations) on the Calculate tab in the dialog box of the ribbon
command File | Properties. This only has an effect if the Iteration property (see there) is set to True.

ShowGuideLinesForTextFrames (property)

Data type: Boolean

Gets or sets the setting "Guidelines for text frames" on the Options tab in the dialog box of the ribbon
command File | Properties.

ShowHiddenObjects (property)

Data type: Boolean

Gets or sets the setting "Show hidden objects" on the Options tab in the dialog box of the ribbon command File
| Properties.

RoundFinalResults (property)
Data type: Boolean

Gets or sets the setting "Round final result" on the Calculate tab in the dialog box of the ribbon command File |
Properties.

RoundintermediateResults (property)

Data type: Boolean

BasicMaker and PlanMaker

Gets or sets the setting "Round intermediate results" on the Calculate tab in the dialog box of the ribbon
command File | Properties.

ActiveSheet (pointer to object)
Data type: Object

Returns the currently active Sheet object that you can use to access the active worksheet.

ActiveWindow (pointer to object)
Data type: Object

Returns the currently active Window object that you can use to access the active document window.

BuiltinDocumentProperties (pointer to object)
Data type: Object

Returns the DocumentProperties collection that you can use to access the document infos (title, subject,
author, etc.).

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the superordinate object, i.e. Workbooks.

Sheets (pointer to collection)

Data type: Object

Returns the Sheets collection, a collection of all worksheets in the document.

Activate (method)

Brings the document window to the front (if Visible is True for the document) and sets the focus to the
document window.

Syntax:

Activate

BasicMaker and PlanMaker

Parameters:
none

Return type:
none

Example:

A}

Bring the first document in the Workbooks collection to the front
pm.Workbooks (1) .Activate

Calculate (method)

Recalculates the document (corresponds to the ribbon command Formulas | Update group | Update data |
Update calculations in PlanMaker).

Syntax:

Calculate
Parameters:

none
Return type:

none

Example:

A}

Recalculate the first document in the Workbooks collection
pm.Workbooks (1) .Calculate

Close (method)
Closes the document.
Syntax:
Close [SaveChanges]
Parameters:

SaveChanges (optional; type: Long or SmoSaveOptions) indicates whether the document should be
saved or not. If you omit this parameter, the user will be asked — but only if the document was changed
since it was last saved. The possible values for SaveChanges are:

smoDoNotSaveChanges = 0 ' Don't ask, don't save

smoPromptToSaveChanges = 1 ' Ask the user

smoSaveChanges = 2 ' Save without asking
Return type:

none

BasicMaker and PlanMaker

Example:

' Close the active document without saving
pm.ActiveWorkbook.Close smoDoNotSaveChanges

Save (method)

Saves the document.
Syntax:

Save
Parameters:

none
Return type:

none

Example:

' Save the active document
pm.ActiveWorkbook.Save

SaveAs (method)

Saves the document under a different name and/or path.

Syntax:

SaveAs FileName, [FileFormat], [Delimiter], [TextMarker]

Parameters:
FileName (type: String): Path and file name under which the document should be saved.

FileFormat (optional; type: Long or PmSaveFormat) determines the file format. This parameter can
take the following values (left: the symbolic constants, right: the corresponding numeric values):

pmFormatDocument = 0 ' PlanMaker document

pmFormatTemplate = 1 ' PlanMaker document template
pmFormatExcel97 = 2 ' Excel 97/2000/XP

pmFormatExcel5 = 3 ' Excel 5.0/7.0

pmFormatExcelTemplate = 4 Excel document template

pmFormatSYLK = 5 Sylk

pmFormatRTF = 6 Rich Text Format

pmFormatTextMaker = 7 TextMaker (= RTF)

pmFormatHTML = 8 HTML document

pmFormatdBaseDOS = 9 dBASE database with DOS character set
pmFormatdBaseAnsi =10 dBASE database with Windows character set
pmFormatDIF =11 Text file with Windows character set
pmFormatPlainTextAnsi =12 Text file with Windows character set
pmFormatPlainTextDOS =13 Text file with DOS character set
pmFormatPlainTextUnix = 14 Text file with ANSI character set for UNIX,

FreeBSD

Linux,

BasicMaker and PlanMaker

pmFormatPlainTextUnicode = 15 ' Text file with Unicode character set
pmFormatdBaseUnicode 18 ' dBASE database with Unicode character set
pmFormatPlainTextUTF8 21 ' Text file with UTF8 character set
pmFormatMSXML = 23 ' Excel 2007 and later

pmFormatPM2008 26 ' PlanMaker 2008 document

pmFormatPM2010 27 ' PlanMaker 2010 document

pmFormatPM2012 = 28 ' PlanMaker 2012 document
pmFormatPM2012Template 29 ' PlanMaker 2012 document template

If you omit this parameter, the value pmFormatDocument will be assumed.

Delimiter (optional; type: String): Indicates the text delimiter (for text file formats), for example,
comma or semicolon. If you omit this parameter, tabs will be used as a delimiter.

TextMarker (optional; type: Long or PmImportTextMarker): Indicates the characters the individual
text fields are enclosed with (for text file formats). The possible values are:

0 ' No marker
1 ' Apostrophe marks
2 ' Quotation marks

pmImportTextMarkerNone =
pmImportTextMarkerApostrophe
pmImportTextMarkerQmark

Return type:
none

Example:

' Save the current document under a new name in Excel 97 format
pm.ActiveWorkbook.SaveAs "c:\docs\test.xls", pmFormatExcel97

PrintOut (method)
Prints the document.
Syntax:
PrintOut [From], [To]
Parameters:

From (optional; type: Long) indicates from which page to start. If omitted, printing starts from the first
page.

To (optional; type: Long) indicates at which page to stop. If omitted, printing stops at the last page.
Return type:
none

Example:

' Print the current document
pm.ActiveWorkbook.PrintOut

BasicMaker and PlanMaker

DocumentProperties (collection)

Access paths:
= Application > Workbooks = Item = DocumentProperties
= Application > ActiveWorkbook = DocumentProperties

ﬂ Description

The DocumentProperties collection contains all document properties of a document. These include, for
example, the title, author, number of cells filled with content, etc.

The individual elements of this collection are of the type DocumentProperty.

E Access to the collection

Each open document has exactly one DocumentProperties collection. It is accessed through
Workbook.BuiltiInDocumentProperties:

' Set the title of the active document to "My calculation"
pm.ActiveWorkbook.BuiltInDocumentProperties (smoPropertyTitle) = "My calculation"

' Show the number of charts in the active document
MsgBox pm.ActiveWorkbook.BuiltInDocumentProperties ("Number of charts")

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — DocumentProperty (default object)
= Application — Application

* Parent - Workbook

Count (property, R/0)
Data type: Long

Returns the number of DocumentProperty objects in the collection, i.e. the number of document properties of
a document. This value is immutable, because all PlanMaker documents have the same number of document
properties.

Item (pointer to object)

Data type: Object

BasicMaker and PlanMaker

Returns an individual DocumentProperty object, i.e. an individual document property.

Which DocumentProperty object you get depends on the parameter that you pass to Item. You can specify
either the numeric index or the name of the desired document property.

The following table contains the possible numeric values and the names associated to them:

smoPropertyTitle = 1 ' "Title"

smoPropertySubject = 2 ' "Subject"

smoPropertyAuthor = 3 ' "Author"

smoPropertyKeywords = 4 ' "Keywords"

smoPropertyComments = 5 ' "Comments"

smoPropertyAppName = 6 ' "Application name"
smoPropertyTimeLastPrinted 7 ' "Last print date"
smoPropertyTimeCreated 8 ' "Creation date"
smoPropertyTimeLastSaved = 9 ' "Last save time"
smoPropertyKeystrokes = 10 ' n/a (not available in PlanMaker)
smoPropertyCharacters = 11 ' n/a (not available in PlanMaker)
smoPropertyWords = 12 ' n/a (not available in PlanMaker)
smoPropertySentences = 13 ' n/a (not available in PlanMaker)
smoPropertyParas = 14 ' n/a (not available in PlanMaker)
smoPropertyChapters = 15 ' n/a (not available in PlanMaker)
smoPropertySections = 16 ' n/a (not available in PlanMaker)
smoPropertyLines = 17 ' n/a (not available in PlanMaker)
smoPropertyPages = 18 ' "Number of pages"
smoPropertyCells = 19 ' "Number of cells"
smoPropertyTextCells = 20 ' "Number of cells with text"
smoPropertyNumericCells = 21 ' "Number of cells with numbers"
smoPropertyFormulaCells = 22 ' "Number of cells with formulas"
smoPropertyNotes = 23 ' "Number of comments"
smoPropertySheets = 24 ' "Number of worksheets"
smoPropertyCharts = 25 ' "Number of charts"
smoPropertyPictures = 26 ' "Number of pictures"
smoPropertyOLEObjects = 27 ' "Number of OLE objects"
smoPropertyDrawings = 28 ' "Number of drawings"
smoPropertyTextFrames = 29 ' "Number of text frames"
smoPropertyTables = 30 ' n/a (not available in PlanMaker)
smoPropertyFootnotes = 31 ' n/a (not available in PlanMaker)
smoPropertyAvgWordLength = 32 ' n/a (not available in PlanMaker)
smoPropertyAvgCharactersSentence = 33 ' n/a (not available in PlanMaker)
smoPropertyAvgWordsSentence = 34 ' n/a (not available in PlanMaker)

This list specifies all document properties that exist in SoftMaker Office, including those that are not available
in PlanMaker. The latter are marked as "not available in PlanMaker".

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Workbook.

BasicMaker and PlanMaker

DocumentProperty (object)

Access paths:
= Application = Workbooks = Item = BuiltlnDocumentProperties = Item
= Application = ActiveWorkbook = BuiltInDocumentProperties = Item

ﬂ Description

A DocumentProperty object represents one individual document property of a document, for example, the
title, the author, or the number of charts in a document.

ﬂ Access to the object

The individual DocumentProperty objects can be accessed solely through enumerating the elements of the
collection DocumentProperties.

For each open document there is exactly one instance of the DocumentProperties collection, namely
BuiltInDocumentProperties in the Workbook object:

A}

Set the title of the active document to "My calculation"

pm.ActiveWorkbook.BuiltInDocumentProperties.Item(smoPropertyTitle) = "My
calculation"

ﬂ Properties, objects, collections and methods

Properties:

= Name R/O

= Value (default property)
= Valid

= Type

Objects:
= Application — Application
= Parent — BuiltInDocumentProperties

Name (property, R/0)
Data type: String
Returns the name of the document property. Examples:

A}

Show the name of the document property smoPropertyTitle, i.e. "Title"
MsgBox pm.ActiveWorkbook.BuiltInDocumentProperties.Item(smoPropertyTitle) .Name

A}

Show the name of the document property "Author", i.e. "Author"
MsgBox pm.ActiveWorkbook.BuiltInDocumentProperties.Item("Author") .Name

BasicMaker and PlanMaker

Value (property)
Data type: String

Gets or sets the content of a document property.

The following example assigns a value to the document property "Title" defined by the numeric constant
smoPropertyTitle and then reads its value again using the string constant "Title":

Sub Main ()
Dim pm as Object

Set pm = CreateObject ("PlanMaker.Application")
pm.Workbooks.Add ' Add a new empty document

With pm.ActiveWorkbook

' Set the new title (using the numeric constant smoPropertyTitle)

.BuiltInDocumentProperties.Item(smoPropertyTitle) .Value = "New title"

' Get the exact same property again (using the string this time)
MsgBox .BuiltInDocumentProperties.Item("Title") .Value

End With
End Sub

Since Item is the default object of the DocumentProperties and Value is the default property of
DocumentProperty, the example can be written clearer in the following way:

Sub Main ()
Dim pm as Object

Set pm = CreateObject ("PlanMaker.Application")
pm.Workbooks.Add ' Add a new empty document

With pm.ActiveWorkbook

' Set the new title (using the numeric constant smoPropertyTitle)
.BuiltInDocumentProperties (smoPropertyTitle) = "New title"

' Get the exact same property again (using the string this time)
MsgBox .BuiltInDocumentProperties ("Title")

End With
End Sub

Valid (property, R/0)
Data type: Boolean

Returns True if the document property is available in PlanMaker.

Background: The list of document properties also contains items that are available only in TextMaker (for
example, smoPropertyChapters, "Number of chapters"). When working with PlanMaker, you can retrieve
only those document properties that are known by this program — otherwise an empty value will be returned

(VT_EMPTY).

BasicMaker and PlanMaker

The Valid property allows you to test whether the respective document property is available in PlanMaker
before using it. Example:

Sub Main ()
Dim pm as Object
Dim i as Integer
Set pm = CreateObject ("PlanMaker.Application")

pm.Visible = True
pm.Workbooks.Add ' add an empty document

With pm.ActiveWorkbook

For i = 1 to .BuiltInDocumentProperties.Count
If .BuiltInDocumentProperties (i) .Valid then
Print i, .BuiltInDocumentProperties(i) .Name, "=",
.BuiltInDocumentProperties (i) .Value
Else
Print i, "Not available in PlanMaker"
End If
Next i
End With
End Sub
Type (property, R/0)

Data type: Long (SmoDocProperties)

Returns the data type of the document property. In order to evaluate a document property correctly, you must
know its type. For example, Title (smoPropertyTitle) is a string value, whereas Creation Date
(smoPropertyTimeCreated) is a date. The possible values are:

smoPropertyTypeBoolean = 0 ' Boolean
smoPropertyTypeDate = 1 ' Date
smoPropertyTypeFloat = 2 ' Floating-point number
smoPropertyTypeNumber = 3 ' Integer number
smoPropertyTypeString = 4 ' String

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. BuiltInDocumentProperties.

BasicMaker and PlanMaker

Sheets (collection)

Access paths:
= Application = Workbooks = Item = Sheets
= Application = ActiveWorkbook = Sheets

ﬂ Description

The Sheets collection contains all worksheets of a document. The individual elements of this collection are of
the type Sheet.

ﬂ Access to the collection

Each open document has exactly one instance of the Sheets collection. It is accessed through
Workbook.Sheets:

' Display the number of worksheets in the active document
MsgBox pm.ActiveWorkbook.Sheets.Count

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Sheet

= Application — Application
= Parent > Workbook

Methods:
= Add

Count (property, R/0)
Data type: Long

Returns the number of Sheet objects in the document — in other words: the number of the worksheets in the
document.

Item (pointer to object)

Data type: Object

Returns an individual Sheet object, i.e. one individual worksheet.

BasicMaker and PlanMaker

Which Sheet object you get depends on the value that you pass to Item. You can specify either the numeric
index or the name of the worksheet:

' Show the name of the first worksheet
MsgBox pm.Application.ActiveWorkbook.Sheets.Item (1) .Name

' Show the name of the worksheet with the name "Income"
MsgBox pm.Application.ActiveWorkbook.Sheets.Item("Income") .Name

Application (pointer to object)

Returns the Application object.

Parent (pointer to object)

Returns the parent object, i.e. an object of the type Workbook.

Add (method)

Adds a new empty worksheet to the document and returns the Sheet object that represents this new worksheet.

Syntax:
Add [Name]
Parameters:

Name (optional; type: String): The name for the new worksheet. If you omit this parameter, the name is
automatically generated ("Tablel", "Table2", "Table3", etc.).

Return type:
Object

Example:

Sub Main ()
Dim pm as Object
Dim newDoc as Object
Dim newSheet as Object

Set pm = CreateObject ("PlanMaker.Application")
pm.Visible = True

' Add a new document
Set newDoc = pm.Workbooks.Add

' Add a worksheet to the document
Set newSheet = newDoc.Sheets.Add ("MySheet")

' Display the name of the new worksheet

MsgBox newSheet.Name
End Sub

BasicMaker and PlanMaker

You can use the Sheet object returned by the Add method like any other worksheet. You can also ignore the
return value of Add and get the new worksheet via ActiveSheet.

Sheet (object)

Access paths:

= Application 2 Workbooks = Item = Sheets = Item
= Application 2 Workbooks = ActiveSheet

= Application 2 ActiveWorkbook = ActiveSheet

= Application = ActiveSheet

n Description
A Sheet object represents an individual worksheet of a document opened in PlanMaker.

An individual Sheet object exists for each worksheet. If you add worksheets to the document or delete them,
the respective Sheet objects will be created or deleted dynamically.

ﬂ Access to the object

The individual Sheet objects can be accessed in the following ways:

= All worksheets of a document are administrated in the Workbook.Sheets collection (type: Sheets):

' Display the names of all worksheets in the active document
For i = 1 To pm.Application.ActiveWorkbook.Sheets.Count

MsgBox pm.Application.ActiveWorkbook.Sheets.Item (i) .Name
Next i

= The active worksheet of a document can be retrieved from the Workbook.ActiveSheet object:

' Display the name of the active worksheet
MsgBox pm.Application.Workbooks (1) .ActiveSheet.Name

= The active worksheet of the active document can be retrieved from the Application.ActiveSheet object:

' Display the name of the active worksheet in the active document
MsgBox pm.Application.ActiveSheet.Name

= Sheet is the Parent object for several objects that are linked to it, for example, Range or AutoFilter:
' Show the name of the current worksheet in an indirect way

MsgBox pm.Application.ActiveSheet.Range ("A1:B20") .Parent.Name

ﬂ Properties, objects, collections and methods

Properties:
= Name (default property)

BasicMaker and PlanMaker

= Index R/O

= Hidden

= PageBreaks

= DisplayRowHeadings

= DisplayColumnHeadings
= AutoFilterMode

Objects:

= PageSetup — PageSetup

= Selection — Range

* Rows — Rows

= Columns — Columns

= Cells »> Range

= Range — Range

= AutoFilter — AutoFilter

= Application — Application
= Parent — Sheets

Methods:

= Activate

= Calculate

= Delete

= Move

= Select

= ShowAllData

Name (property)
Data type: String

Gets or sets the name of the worksheet.

Index (property, R/0)
Data type: Long

Returns the numeric index of the worksheet within the other worksheets (see also Move).

Hidden (property)
Data type: Boolean

Gets or sets the setting whether the worksheet is hidden. Corresponds to the ribbon commands Insert | Tables
group | Sheet | Show and Hide in PlanMaker.

PageBreaks (property)

Data type: Boolean

BasicMaker and PlanMaker

Gets or sets the setting whether page breaks should be displayed in the worksheet. Corresponds to the setting
Page breaks in the dialog box of the ribbon command Insert | Tables group | Sheet | Properties in PlanMaker.

DisplayRowHeadings (property)
Data type: Boolean

Gets or sets the setting whether row headings should be shown in the worksheet. Corresponds to the setting
Row headers in the dialog box of the ribbon command Insert | Tables group | Sheet | Properties.

DisplayColumnHeadings (property)
Data type: Boolean

Gets or sets the setting whether column headings should be shown in the worksheet. Corresponds to the setting
Column headers in the dialog box of the ribbon command Insert | Tables group | Sheet | Properties.

DisplayGridlines (property)
Data type: Boolean

Gets or sets the setting whether grid lines should be shown in the worksheet. Corresponds to the setting
Gridlines in the dialog box of the ribbon command Insert | Tables group | Sheet | Properties.

GridlineColor (property)
Data type: Long (SmoColor)

Gets or sets the color of the grid lines as a "BGR" value (Blue-Green-Red triplet). You can either indicate an
arbitrary value or use one of the pre-defined BGR color constants.

GridlineColorindex (property)

Data type: Long (SmoColorIndex)

Gets or sets the color of the grid lines as an index color. "Index colors" are the standard colors of PlanMaker,
consecutively numbered from -1 for transparent to 15 for light gray. You may use the values shown in the Index
colors table.

Note: It is recommended to use the GridlineColor property (see above) instead of this one, since it is not
limited to the standard colors but enables you to access the entire BGR color palette.

AutoFilterMode (property)
Gets or sets the setting whether drop-down arrows should be shown for the active AutoFilter.

Note: You can always read this setting. But if you want to set it, you should note that this property can only be
used to hide the drop-down arrows. To show the drop-down arrows, you must invoke the AutoFilter method
from the Range object instead.

BasicMaker and PlanMaker

PageSetup (pointer to object)

Data type: Object

Returns the PageSetup object that you can use to access the page formatting of the worksheet (paper format,
margins, etc.).

Selection (pointer to object)

Data type: Object

Returns a Range object that represents the currently selected cells of the worksheet. Among other things, you
can use it to read and change their contents and formatting.

If nothing is selected in the worksheet, the Range object represents the current cell.

Rows (pointer to object)
Data type: Object
Returns the Rows collection, a collection of all rows in the worksheet.

The individual elements of this collection are Range objects. You can therefore apply all properties and
methods of ranges to them.

Example:

' Set the font for all cells in row 10 to Courier New
pm.ActiveSheet.Rows (10) .Font.Name = "Courier New"

Columns (pointer to object)
Data type: Object
Returns the Columns collection, a collection of all rows in the worksheet.

The individual elements of this collection are Range objects. You can therefore apply all properties and
methods of ranges to them.

Example:
' Set the font for all cells in column C (= 3rd column) to Courier New
pm.ActiveSheet.Columns (3) .Font.Name = "Courier New"

Cells (pointer to object)
Data type: Object

Returns a Range object that contains all cells of the current worksheet. This is useful for two applications:

= You can apply an operation (primarily formatting) to each cell in the worksheet:

BasicMaker and PlanMaker

' Make the whole worksheet red
pm.ActiveSheet.Cells.Shading.ForegroundPatternColor = smoColorRed

= You can address the individual cells using loop variables instead of manually building a string with the cell
address (for example, "B5" for the second column in the fifth row). To do this, use the Item property of the
Range object returned by the Cells pointer, for example:

' Fill the first 5 by 10 cells of the active worksheet
Dim row, col as Integer
For row = 1 To 5
For col = 1 to 10
pm.ActiveSheet.Cells.Item(row, col).Value = 42

Next col
Next row

Range (pointer to object)
Data type: Object

Returns a Range object matching the specified parameters. You can use this object to access the cells in a range
and, for example, get or set their values.

Syntax 1:
obj = Range (Celll)

Syntax 2:

obj Range (Celll, Cell2)
Parameters:

Celll (type: String) specifies either according to syntax 1 a cell range (then Cell2 must be omitted) or
according to syntax 2 the upper left corner of a range (then parameter Cell2 specifies the lower right
corner of the range).

Cell2 (optional; type: String) should be used only if Celll refers to an individual cell.

Examples for syntax 1:

Range ("A1:B20") ' Cells Al to B20
Range ("A1"™) ' Only cell Al
Range ("A:A") ' The whole column A
Range ("3:3") ' The whole row 3
Range ("Summer") ' Named range "Summer"
Example for syntax 2:
Range ("A1", "B20") ' Cells Al to B20
Example:

' Select the cells from Al to B20 in the active worksheet
pm.ActiveSheet.Range ("A1:B20") .Select

BasicMaker and PlanMaker

AutoFilter (pointer to object)
Data type: Object

Returns the AutoFilter object that lets you access the AutoFilter of the worksheet.

Application (pointer to object)
Returns the Application object.

Parent (pointer to object)

Returns the parent object, i.e. Sheets.

Activate (method)
Makes the worksheet become the active worksheet.

Syntax:

Activate
Parameters:

none
Return type:

none

Example:

' Bring the first sheet of the active document to the front
pm.ActiveWorkbook.Sheets (1) .Activate

Calculate (method)

Recalculates the worksheet (similar to the ribbon command Formulas | Update group | Update data | Update
calculations in PlanMaker, except that the ribbon command recalculates a/l/ worksheets of a workbook).

Syntax:

Calculate
Parameters:

none
Return type:

none

Example:

BasicMaker and PlanMaker

' Recalculate the first worksheet
pm.ActiveWorkbook.Sheets (1) .Calculate

Delete (method)
Deletes the worksheet from the document.

Syntax:

Delete
Parameters:

none
Return type:

none

Example:

' Delete the first sheet from the active document
pm.ActiveWorkbook.Sheets (1) .Delete

Move (method)
Changes the position of the worksheet within the other worksheets.

Syntax:

Move Index
Parameters:

Index (type: Long) indicates the target position.
Return type:

none

Example:

' Move the active worksheet to the third position
pm.ActiveSheet .Move 3

Select (method)

Selects all cells of the worksheet (corresponds to the ribbon command Home | Selection group | Select all in
PlanMaker).

Syntax:

Select

Parameters:

BasicMaker and PlanMaker

none
Return type:
none

Example:

' Select all cells in the current worksheet
pm.ActiveSheet.Select

ShowAlIData (method)

Makes all cells visible again that are currently hidden by an AutoFilter. Corresponds to clicking the entry
"(All)" in the drop-down menu that appears when you click on the arrow button of an AutoFilter.

PageSetup (object)

Access paths:

= Application = Workbooks = Item - Sheets = Item > PageSetup
= Application - Workbooks = ActiveSheet > PageSetup

= Application > ActiveWorkbook = ActiveSheet > PageSetup

= Application > ActiveSheet > PageSetup

n Description

The PageSetup object contains the page settings of the Sheet object to which it belongs. You can use it to
determine and change the paper size, page size and margins as well as the print direction of a single worksheet.

E Access to the object

Each worksheet in a document has exactly one instance of the PageSetup object. It is accessed through
Sheet.PageSetup:

' Set the left margin of the active sheet to 2cm
pm.ActiveSheet.PageSetup.LeftMargin = pm.CentimetersToPoints (2)

Note: You can define different page settings for each individual worksheet in a document.

ﬂ Properties, objects, collections and methods

Properties:

= LeftMargin

= RightMargin
= TopMargin

= BottomMargin

BasicMaker and PlanMaker

= HeaderMargin

= FooterMargin

= PageHeight

= PageWidth

= Orientation

= PaperSize

= PrintComments

= CenterHorizontally
= CenterVertically

= Zoom

= FirstPageNumber
= PrintGridlines

= PrintHeadings

= Order

= PrintArea

= PrintTitleRows

= PrintTitleColumns

Objects:
= Application — Application
= Parent — Sheet

LeftMargin (property)
Data type: Single

Gets or sets the left page margin of the worksheet in points (1 point corresponds to 1/72 inches).

RightMargin (property)
Data type: Single

Gets or sets the right page margin of the worksheet in points (1 point corresponds to 1/72 inches).

TopMargin (property)
Data type: Single

Gets or sets the top page margin of the worksheet in points (1 point corresponds to 1/72 inches).

BottomMargin (property)
Data type: Single

Gets or sets the bottom page margin of the worksheet in points (1 point corresponds to 1/72 inches).

HeaderMargin (property)

Data type: Single

BasicMaker and PlanMaker

Gets or sets the distance between the header and the top edge of the sheet in points (1 point corresponds to 1/72
inches).

FooterMargin (property)
Data type: Single

Gets or sets the distance between the footer and the bottom edge of the sheet in points (1 point corresponds to
1/72 inches).

PageHeight (property)
Data type: Single
Gets or sets the page height of the worksheet in points (1 point corresponds to 1/72 inches).

If you set this property, the PaperSize property (see below) will be automatically changed to a suitable paper
format.

PageWidth (property)
Data type: Single
Gets or sets the page width of the worksheet in points (1 point corresponds to 1/72 inches).

If you set this property, the PaperSize property (see below) will be automatically changed to a suitable paper
format.

Orientation (property)
Data type: Long (SmoOrientation)

Gets or sets the page orientation of the worksheet. The following constants are allowed:

smoOrientLandscape
smoOrientPortrait

0 ' Landscape
1 ' Portrait

PaperSize (property)
Data type: Long (SmoPaperSize)

Gets or sets the page size of the worksheet. The following constants are allowed:

smoPaperCustom
smoPaperLetter
smoPaperLetterSmall
smoPaperTabloid
smoPaperLedger
smoPaperLegal
smoPaperStatement
smoPaperExecutive

~N o0 W N

BasicMaker and PlanMaker

smoPaperA3 = 8
smoPaperA4 = 9
smoPaperA4Small =10
smoPaperA5 = 11
smoPaperB4 =12
smoPaperB5 = 13
smoPaperFolio = 14
smoPaperQuarto = 15
smoPaperl0x14 =16
smoPaperllxl7 = 17
smoPaperNote = 18
smoPaperEnvelope9 =19
smoPaperEnvelopel0 = 20
smoPaperEnvelopell = 21
smoPaperEnvelopel2 = 22
smoPaperEnvelopel4 = 23
smoPaperCSheet = 24
smoPaperDSheet = 25
smoPaperESheet = 26
smoPaperEnvelopeDL = 27
smoPaperEnvelopeC5 = 28
smoPaperEnvelopeC3 = 29
smoPaperEnvelopeC4 = 30
smoPaperEnvelopeC6 = 31
smoPaperEnvelopeC65 = 32
smoPaperEnvelopeB4 = 33
smoPaperEnvelopeB5 = 34
smoPaperEnvelopeB6 = 35
smoPaperEnvelopeItaly = 36
smoPaperEnvelopeMonarch = 37
smoPaperEnvelopePersonal = 38
smoPaperFanfoldUS = 39
smoPaperFanfoldStdGerman = 40
smoPaperFanfoldLegalGerman = 41
PrintComments

Data type: Long (PmPrintLocation)

Gets or sets the setting whether comments should be printed in the worksheet. Corresponds to the setting
"Comments" on the Options tab in the dialog box of the ribbon command File | Print group | Page setup. The
following constants are allowed:

pmPrintNoComments = 0 ' Don't print comments
pmPrintInPlace = 1 ' Print comments

CenterHorizontally

Data type: Boolean

Gets or sets the setting whether the worksheet should be centered horizontally when printing. Corresponds to
the setting "Center horizontally" on the Options tab in the dialog box of the ribbon command File | Print group
| Page setup.

BasicMaker and PlanMaker

CenterVertically

Data type: Boolean

Gets or sets the setting whether the worksheet should be centered vertically when printing. Corresponds to the
setting "Center vertically" on the Options tab in the dialog box of the ribbon command File | Print group |
Page setup.

Zoom

Data type: Long

Gets or sets the zoom level at which the worksheet should be printed. Corresponds to the setting "Scaling" on
the Options tab in the dialog box of the ribbon command File | Print group | Page setup.

FirstPageNumber

Data type: Long

Gets or sets the page number for the first page when printing. You can pass the value pmAutomatic to give the
first page the page number 1. Corresponds to the setting "Page number" on the Options tab in the dialog box of
the ribbon command File | Print group | Page setup.

PrintGridlines
Data type: Boolean

Gets or sets the setting whether the grid lines of the worksheet should be printed. Corresponds to the setting
"Grid" on the Options tab in the dialog box of the ribbon command File | Print group | Page setup.

PrintHeadings

Data type: Boolean

Gets or sets the setting whether the row and column headers of the worksheet should be printed. Corresponds to
the setting "Row and column headers" on the Options tab in the dialog box of the ribbon command File | Print
group | Page setup.

Order
Data type: Long (PmOrder)

Gets or sets the printing order for multi-page worksheets. The possible values are:

0 ' From left to right
1 ' From top to bottom

pmOverThenDown
pmDownThenOver

Corresponds to the setting "Print order" on the Options tab in the dialog box of the ribbon command File |
Print group | Page setup.

BasicMaker and PlanMaker

PrintArea

Data type: String

Gets or sets the print range of the worksheet, analogous to the ribbon command File | Print group | Define
print range.

If an empty string is returned, no print area is currently defined. If you pass an empty string, the existing print
area will be removed.

PrintTitleRows

Data type: String

Gets or sets the repeated rows of the worksheet, analogous to the setting "Repeated rows" on the Options tab in
the dialog box of the ribbon command File | Print group | Page setup.

Example:

' Repeat the rows 2 to 5 of the active worksheet
pm.ActiveSheet.PageSetup.PrintTitleRows = "2:5"

PrintTitleColumns

Data type: String

Gets or sets the repeat rows of the worksheet, analogous to the setting "Repeated columns" on the Options tab
in the dialog box of the ribbon command File | Print group | Page setup.

Example:

' Repeat the columns A to C of the active worksheet
pm.ActiveSheet.PageSetup.PrintTitleColumns = "A:C"

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Sheet.

BasicMaker and PlanMaker

Range (object)

Access paths (for arbitrary cell ranges):

= Application = Workbooks = Item = Sheets = Item - Range
= Application > Workbooks = ActiveSheet - Range

= Application > ActiveWorkbook = ActiveSheet - Range

= Application > ActiveSheet - Range

= Application - Range

Access paths (for entire table rows):

= Application 2 Workbooks = Item = Sheets 2 Item - Rows = Item
= Application 2 Workbooks = ActiveSheet > Rows = Item

= Application 2 ActiveWorkbook = ActiveSheet 2> Rows = Item

= Application 2 ActiveSheet 2> Rows = Item

= Application 2 Rows = Item

Access paths (for entire table columns):

= Application 2 Workbooks = Item = Sheets = Item = Columns = Item
= Application 2 Workbooks = ActiveSheet = Columns = Item

= Application = ActiveWorkbook = ActiveSheet 2 Columns = Item

= Application = ActiveSheet 2 Columns = Item

= Application = Columns = Item

Access paths (for the currently selected cells):

= Application 2 Workbooks = Item = Sheets = Item = Selection
= Application 2 Workbooks = ActiveSheet = Selection

= Application 2 ActiveWorkbook = ActiveSheet = Selection

= Application 2 ActiveSheet = Selection

= Application = Selection

n Description

Range represents a specific cell range in a worksheet (Sheet). This range can contain an arbitrary number of
cells, from one cell to the whole worksheet.

You can use a Range object to get and set among other things the contents and formatting of the cells in the
represented range, to copy the range to the clipboard, etc.

ﬂ Access to the object

There are many ways to access a Range object:

1. You can access the Range object directly by indicating the start and end cell. Example:

' Add a comment to the cell C10
pm.ActiveSheet.Range ("C10") .Comment = "A comment"

2. The Sheet.Selection property returns a Range object that represents the active selection, i.e. the currently
selected cells. Example:

BasicMaker and PlanMaker

' Format the current selection with the font "Courier New"
pm.ActiveSheet.Selection.Font.Name = "Courier New"

3. The Rows collection returns Range objects that represent an entire row of the worksheet. You can access
the Rows collection through the Sheet.Rows object. Example:

' Hide row 2 of the worksheet
pm.ActiveSheet.Rows (2) .Hidden = True

4. The Columns collection returns Range objects that represent an entire column of the worksheet. You can
access the Columns collection through the Sheet.Columns object. Example:

' Hide the column C (= third column) in the worksheet
pm.ActiveSheet.Columns (3) .Hidden = True

No matter how you access the Range object, you can apply all the properties and methods described below.

ﬂ Properties, objects, collections and methods

Properties:

= Jtem (default property)
= Row R/O

= Column R/O

= Name

* Formula

= Value

= Value2

= HorizontalAlignment
= VerticalAlignment
* WrapText

= LeftPadding

= RightPadding

= TopPadding

= BottomPadding

= MergeCells

= Orientation

= VerticalText

= PageBreakCol

= PageBreakRow

= Comment

* Locked

* FormulaHidden

= CellHidden

= Nonprintable

= Hidden

= RowHeight

= ColumnWidth

Objects:

= Cells »> Range

= Range — Range

* Workbook — Workbook

BasicMaker and PlanMaker

= Sheet — Sheet

* NumberFormatting — NumberFormatting
* Font —> Font

= Shading — Shading

= Validation — Validation

= Application — Application

= Parent — Sheet

Collections:
= Borders — Borders

Methods:

= AutoFit

= ApplyFormatting

= Select

= Copy

= Cut

= Paste

= Insert

= Delete

= Clear

= ClearContents

= ClearFormats

= ClearConditionalFormatting
= ClearComments

= ClearInputValidation
= AutoFilter

Item (property, R/0)
Data type: Object

Returns a Range object that consists of just one individual cell of the calling Range object. You can use it to
address each cell of the calling Range object individually.

Syntax:

Item (RowIndex, ColumnIndex)
Parameters:

RowlIndex (Type: Long) indicates the row number of the desired cell (as an offset from the top left cell
in the range).

ColumnIndex (optional; Type: Long) indicates the column number of the desired cell (as an offset from
the top left cell in the range).

Examples:

' Fill the first cell of the Range object with the value 42
pm.ActiveSheet.Range ("B5:B10") .Item(1l, 1) .Value = 42

' Shorter, as Item is the default property of the Range object
pm.ActiveSheet.Range ("B5:B10") (1, 1) .Value = 42

BasicMaker and PlanMaker

' Change the format of the first cell of the current selection
pm.ActiveSheet.Selection.Item(l, 1) .Font.Size = 24

' Shorter again, using the default property
pm.ActiveSheet.Selection(l, 1) .Font.Size = 24

Row (property, R/0)
Data type: Long
Returns the row number of the top row in the given range.

If multiple ranges are selected, the value for the first selected range will be returned.

Column (property, R/0)
Data type: Long
Returns the column number of the left-most column in the given range.

If multiple ranges are selected, the value for the first selected range will be returned.

Name (property)
Data type: String

Gets or sets the name of the range. Similar to the commands of the ribbon tab Formula | Named areas group,
you can use it to set up and read named areas.

Formula (property)
Data type: String

Gets or sets the formulas of the cells in the range.

Example:

' Enter the same formula for the cells Al, A2, Bl and B2
pm.ActiveSheet.Range ("Al:B2") .Formula = "=CHAR (64)"

Note: If the formula doesn't start with "=" or "+", it will be entered as a literal value (number, string or date).

Value (property)

Data type: String

Gets or sets the values of the cells in the range. Dates will be interpreted as a string (see also the property
Value2 below).

Example:

BasicMaker and PlanMaker

' In Zellen Al, A2, Bl und B2 den Wert 42 eintragen
pm.ActiveSheet.Range ("Al1:B2") .Value = 42

Value2 (property)

Data type: String

Gets or sets the values of the cells in the range. Dates will be interpreted as a number.

The difference between Formula, Value und Value2

To get or set the content of cells, you can use any of the three properties described above: Formula, Value or
Value2. The difference:

= If the cell contains a calculation, Formula returns the formula text, for example, "=ABS(A1)".

= Value and Value2, on the other hand, always return the result of the calculation. They only differ in the
interpretation of date values: while Value returns a string, Value2 returns the serial date number.

HorizontalAlignment (property)

Data type: Long (PmHAlign)

Gets or sets the horizontal alignment of the cells in the range. The possible values are:

pmHAlignGeneral = 0 ' Default

pmHAlignLeft =1 ' Left

pmHAlignRight = 2 ' Right

pmHAlignCenter = 3 ' Centered
pmHAlignJustify = 4 ' Justified
pmHAlignCenterAcrossSelection = 5 ' Centered across columns

VerticalAlignment (property)

Data type: Long (PmV Align)

Gets or sets the vertical alignment of the cells in the range. The possible values are:

pmVAlignTop 0 ' Top

pmVAlignCenter = 1 ' Centered
pmVAlignBottom = 2 ' Bottom
pmVAlignJustify = 3 ' Vertically justified
WrapText (property)

Data type: Long

Gets or sets the "Line break" setting for the cells in the range, analogous to the Line break option on the ribbon
tab Home | Alignment group.

BasicMaker and PlanMaker

LeftPadding (property)
Data type: Single

Gets or sets the left inner margin of the cells, measured in points (1 point corresponds to 1/72 inches).

RightPadding (property)
Data type: Single

Gets or sets the right inner margin of the cells, measured in points (1 point corresponds to 1/72 inches).

TopPadding (property)
Data type: Single

Gets or sets the top inner margin of the cells, measured in points (1 point corresponds to 1/72 inches).

BottomPadding (property)
Data type: Single

Gets or sets the bottom inner margin of the cells, measured in points (1 point corresponds to 1/72 inches).

MergeCells (property)
Data type: Long

Gets or sets the setting "Merge cells", analogous to the option Merge cells on the ribbon tab Home |
Alignment group. All cells in the range are connected to form a large cell (True), or the cell connection is
removed again (False).

Orientation (property)
Data type: Long

Gets or sets the print orientation of the cells in the range. Possible values: 0, 90, 180 and -90 corresponding to
the respective rotation angle.

Note: The value 270 will be automatically converted to -90.

VerticalText (property)
Data type: Long
Gets or sets the setting "Vertical text".

Corresponds to the option Vertical text on the Alignment tab of the dialog box for the cell properties.

BasicMaker and PlanMaker

PageBreakCol (property)
Data type: Boolean
Gets or sets the setting whether a page break should be performed to the left of the range.

If you set this property to True, a vertical page break will be performed between the range and the column to
the left of it. If you set it to False, the break will be removed again.

Corresponds to the ribbon command Layout | Page setup group | Page break | Insert before column.

PageBreakRow (property)
Data type: Boolean
Gets or sets the setting whether a page break should be performed above the range.

If you set this property to True, a horizontal page break will be performed above the range. If you set it to
False, the break will be removed again.

Corresponds to the ribbon command Layout | Page setup group | Page break | Insert before row.

Comment (property)

Data type: String

Gets or sets the comment for the cells in the range. For getting the value, if the comments are different or no
comments are present, an empty string will be returned.

Corresponds to the comments that can be created and edited in PlanMaker with the ribbon command Insert |
Comment.

Locked (property)
Data type: Long

Gets or sets the "Cell protection" setting, corresponding to the option of the same name on the Protection tab
of the dialog box for the cell properties.

FormulaHidden (property)
Data type: Long

Gets or sets the "Hide formula" setting, corresponding to the option of the same name on the Protection tab of
the dialog box for the cell properties.

CellHidden (property)

Data type: Long

BasicMaker and PlanMaker

Gets or sets the "Hide cell" setting, corresponding to the option of the same name on the Protection tab of the
dialog box for the cell properties.

Nonprintable (property)
Data type: Long

Gets or sets the "Do not print cell" setting, corresponding to the option of the same name on the Protection tab
of the dialog box for the cell properties.

Hidden (property)

Data type: Long

Gets or sets the setting whether complete columns or rows are hidden, analogous to the ribbon commands
Home | Cells group | Visibility | Hide columns and Hide rows.

The area must designate one or more whole rows or columns. Some examples:

= To reference column A, use the notation A:A.

To reference the columns from A to C, use the notation A:C.
= To reference row 3, use the notation 3:3.
= To reference the rows 3 to 7, use the notation 3:7.

Examples:

' Hide the column A
pm.ActiveSheet.Range ("A:A") .Hidden = True

' Hide the columns A, B and C
pm.ActiveSheet.Range ("A:C") .Hidden = True

' Hide the row 3
pm.ActiveSheet.Range ("3:3") .Hidden = True

' Hide the rows from 3 to 7
pm.ActiveSheet.Range ("3:7") .Hidden = True

Whole rows can also be addressed through the Rows collection and whole columns through the Columns
collection:

' Hide the column A (= the first column)
pm.ActiveSheet.Columns (1) .Hidden = True

' Hide the row 3
pm.ActiveSheet.Rows (3) .Hidden = True

RowHeight (property)

Data type: Long

BasicMaker and PlanMaker

Gets or sets the row height in points (1 point corresponds to 1/72 inches).

The specified range must contain one or more entire rows or columns. For more information, see the notes on
the Hidden property.

ColumnWidth (property)

Data type: Long
Gets or sets the column width in points (1 point corresponds to 1/72 inches).

The specified range must contain one or more entire columns. For more information, see the notes on the
Hidden property.

Cells (pointer to object)

Data type: Object

Returns a Range object whose elements correspond exactly to those of the source area. This allows you to
address the individual cells of an area using loop variables. Example:

' Fill all cells of the range with values
Dim row, col as Integer
Dim rng as Object

Set rng = pm.ActiveSheet.Range ("Al:F50")

For row = 1 To rng.Rows.Count
For col = 1 to rng.Columns.Count
rng.Cells.Item(row, col).Value = 42
Next col
Next row

Range (pointer to object)

Data type: Object

Returns a Range object matching the specified parameters. You can use this to construct a "sub-range" for a
range and get or set the values for it, for example

Note: Please note that you have to use relative cell addressing here. For example, if you pass the cell address
B2 as a parameter, it does not specify the cell with the absolute coordinates B2, but the cell that is located in the
second row and second column of the range (see example).

Syntax 1:

obj = Range (Celll)
Syntax 2:

obj = Range (Celll, Cell2)
Parameters:

BasicMaker and PlanMaker

Celll (type: String) specifies either according to syntax 1 a cell range (then Cell2 must be omitted) or
according to syntax 2 the upper left corner of a range (then parameter Cell2 specifies the lower right
corner of the range).

Cell2 (optional; type: String) should be used only if Celll refers to an individual cell.

Examples for syntax 1:

Range ("Al1:B20") ' Cells Al to B20
Range ("A1") ' Only cell Al

Range ("A:A") ' The whole column A

Range ("3:3") ' The whole row 3

Range ("Summer") ' Named range "Summer"
Example for syntax 2:

Range ("A1", "B20") ' Cells Al to B20

Example:

' Selects the cell D4
pm.ActiveSheet.Range ("B2:F20") .Range ("C3:C3") .Select

Workbook (pointer to object)

Data type: Object

Returns the Workbook object that you can use to access the workbook (= document) assigned to the range.

Sheet (pointer to object)
Data type: Object

Returns the Sheet object that you can use to access the worksheet belonging to the range.

NumberFormatting (pointer to object)

Data type: Object

Returns the NumberFormatting object that you can use to access the number formatting of the cells in the
range.

Font (pointer to object)
Data type: Object

Returns the Font object that you can use to access the character formatting of the cells in the range.

Shading (pointer to object)

Data type: Object

BasicMaker and PlanMaker

Returns the Shading object that you can use to access the shading of the cells in the range.

Validation (pointer to object)
Data type: Object

Returns the Validation object that you can use to access the input validation in the range.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Sheet.

Borders (pointer to collection)

Data type: Object

Returns a Borders collection representing the four border lines of the cells in the range. You can use this
collection to retrieve and change the line settings (thickness, color, etc.).

AutoFit (method)

Set the row(s) or column(s) to optimal height or width, respectively. Corresponds to the ribbon commands Lay-
out | Row group | Optimal height and Optimal width.

The given range must cover entire rows or columns.
Syntax:
AutoFit
Parameters:
none
Return type:
none

Examples:

' Set the column A to optimal width
pm.ActiveSheet.Range ("A:A") .AutoFit

' Set the columns A, B and C to optimal width

BasicMaker and PlanMaker

pm.ActiveSheet.Range ("A:C") .AutoFit

' Set the row 3 to optimal width
pm.ActiveSheet.Range ("3:3") .AutoFit

' Set the rows from 3 to 7 to optimal width
pm.ActiveSheet.Range ("3:7") .AutoFit

' Set the column A (= the first column) to optimal width
pm.ActiveSheet.Columns (1) .AutoFit

' Set the row 3 to optimal width
pm.ActiveSheet.Rows (3) .AutoFit

ApplyFormatting (method)
Usually, PlanMaker executes formatting commands instantaneously.

However, if you want to apply multiple formatting changes consecutively to an individual range, you can
accelerate their execution by setting the worksheet property ManualApply (see the Workbook object) to
True.

In this case, you are responsible for notifying PlanMaker when you finish issuing formatting commands. To do
this, enclose the formatting commands in a With structure and indicate their end using the ApplyFormatting
method (see example).

Syntax:
ApplyFormatting
Parameters:
none
Return type:
none

An example using automatic formatting:

Sub Main
Dim pm as Object

Set pm = CreateObject ("PlanMaker.Application")
pm.Visible = True

With pm.ActiveSheet.Range ("Al:C3")
.Font.Name = "Arial"
.Font.Size = 14
.Font.Bold = True
.NumberFormatting.Type = pmNumberPercentage
.NumberFormatting.Digits = 2
End With

Set pm = Nothing
End Sub

An example using manual formatting:

BasicMaker and PlanMaker

Sub Main
Dim pm as Object

Set pm = CreateObject ("PlanMaker.Application")
pm.Visible = True
pm.ActiveWorkbook .ManualApply = True
With pm.ActiveSheet.Range ("A1:C3")
.Font.Name = "Arial"
.Font.Size = 14
.Font.Bold = True
.NumberFormatting.Type = pmNumberPercentage
.NumberFormatting.Digits = 2
.ApplyFormatting
End With
pm.ActiveWorkbook.ManualApply = False

Set pm = Nothing
End Sub

Select (method)
Selects the range specified by the Range command.

Syntax:
Select [Add]

Parameters:

Add (optional; type: Boolean): If False or omitted, the new selection replaces the existing one.
Otherwise, the new selection will be added to the old one.

Return type:
none

Examples:

' Select the range B2:D4
pm.ActiveSheet.Range ("B2:D4") .Select

' Extend the current selection by the range F6:F10
pm.ActiveSheet.Range ("F6:F10") .Select True

Deselecting: 1f you would like to remove any existing selection, simply select a range consisting of only one
cell:

' Set the cell frame into cell Al (without selecting it)
pm.ActiveSheet.Range ("Al") .Select

Copy (method)
Copies the cells of a range to the clipboard.

Syntax:

BasicMaker and PlanMaker

Copy

Parameters:
none
Return type:

none

Cut (method)

Cuts the cells of a range to the clipboard.

Syntax:

Cut
Parameters:

none
Return type:

none

Paste (method)

Pastes the content of the clipboard to the range. If the range consists of more than one cell, the content of the
clipboard will be cut or extended so that it exactly matches the range.

Syntax:

Paste
Parameters:

none
Return type:

none

Insert (method)
Inserts an empty cell area sized equally to the range defined by Range.

PlanMaker behaves as if you had selected the range and then selected the commands of the ribbon tab Home |
Cells group | Insert.

Syntax:
Insert [Shift]

Parameters:

BasicMaker and PlanMaker

Shift (optional; type: Long or PmInsertShiftDirection): Indicates in which direction the existing cells
will be moved. The possible values are:

pmShiftDown = 0 ' Downwards
pmShiftToRight = 1 ' To the right

If this parameter is omitted, the value pmShiftDown is taken.
Return type:

none

Delete (method)

Deletes all cells from the range defined by Range. The rest of the cells in the table are shifted accordingly to
fill the gap.

PlanMaker behaves as if you had selected the range and then select the commands of the ribbon tab Home |
group Cells | Delete.

Syntax:
Delete [Shift]
Parameters:

Shift (optional; type: Long or PmDeleteShiftDirection): Indicates in which direction the existing cells
will be moved. The possible values are:

pmShiftUp
pmShiftToLeft

0 ' Upwards
1 ' To the left

If this parameter is omitted, the value pmShiftUp is taken.
Return type:

none

Clear (method)

Deletes all contents and formatting of all cells in the range defined by Range.
Syntax:
Clear
Parameters:
none
Return type:

none

ClearContents (method)

Deletes the contents of all cells in the range defined by Range. Their formatting is retained.

BasicMaker and PlanMaker

Syntax:

ClearContents
Parameters:

none
Return type:

none

ClearFormats (method)

Deletes the formatting of all cells in the range defined by Range (except for conditional formatting). Their cell
contents are retained.

Syntax:

ClearFormats
Parameters:

none
Return type:

none

ClearConditionalFormatting (method)
Deletes the conditional formatting of all cells in the range defined by Range. Their cell contents are retained.
Syntax:
ClearConditionalFormatting
Parameters:
none
Return type:

none

ClearComments (method)
Deletes all comments in the range defined by Range.
Syntax:
ClearComments
Parameters:

none

BasicMaker and PlanMaker

Return type:

none

ClearInputValidation (method)

Removes all input validation settings in the range defined by Range.
Syntax:
ClearInputValidation
Parameters:
none
Return type:

none

AutoFilter (method)
Activates, deactivates or configures an AutoFilter for the range.
Syntax:
AutoFilter ([Field], [Criterial], [Operator], [Criteria2], [VisibleDropDown]
Parameters:

Note: If you do not indicate any parameter, any existing AutoFilter for the given range will be switched
off (see examples below).

Field (optional; type: Long) indicates the number of the column inside the AutoFilter area after which
want to filter the data. If you omit this parameter, the number 1 (i.c., the first column) will be assumed.

Criterial (optional; type: Variant) indicates the criterion of the filter — for example "red" if you want to
filter for the value "red", or ">3" to filter for values greater than three. Exception: If one of the operators
pmTopl0Items, pmTopl0Percent, pmBottom10Items or pmBottom10Percent is used, then Criterial
contains a numeric value indicating how many values to display. If you omit the Criterial parameter, all
rows will be shown.

Operator (optional; type: Long or PmAutoFilterOperator) specifies the type of filtering:

pmAll = 0 ' Show all rows (i.e., do not filter)
pmAnd = 1 ' Criterial and Criteria2 must be met.
pmBottomlOItems = 2 ' Only the n cells with the lowest wvalues*
pmBottomlOPercent = 3 ' Show only the bottom n percent values*
pmOr = 4 ' Criterial or Criteria2 must be met.
pmToplOItems = 5 ' Show only the n highest wvalues*
pmToplOPercent = 6 ' Show only the top n percent values*
pmBlank = 7 ' Only blank rows

pmNonblank 8 ' Only non-blank rows

* In these cases, Criterial must contain the value for "n".

BasicMaker and PlanMaker

Criteria2 (optional; type: Variant) allows you to specify a second filter term. This is only possible with
the operators pmAnd and pmOr.

VisibleDropDown (optional; type: Boolean) allows you to indicate whether drop-down arrows should
be shown for the filter (True) or not (False). If you omit this parameter, the value True is taken.

Return type:
none
Examples:

pm.Application.ActiveSheet.Range(""A1:D10").AutoFilter 1, pmTop10Items, 5 instructs PlanMaker
to display only the first 5 items from the column Al.

If you do not specify any parameters, any existing AutoFilter for the given range will be switched off.
Example:

pm.ActiveSheet.Range(""A1:D10").AutoFilter disables the above AutoFilter.

Rows (collection)

Access paths for the rows of a worksheet:

= Application 2 Workbooks = Item = Sheets = Item = Rows
= Application 2 Workbooks = Item = ActiveSheet > Rows

= Application 2 ActiveWorkbook = ActiveSheet > Rows

= Application = ActiveSheet 2> Rows

= Application - Rows

Access paths for the rows of arbitrary ranges:

= Application 2 Workbooks = Item = Sheets 2 Item = Range = Rows
= Application 2 Workbooks = ActiveSheet 2 Range = Rows

= Application 2 ActiveWorkbook = ActiveSheet 2 Range = Rows

= Application 2 ActiveSheet 2 Range = Rows

= Application 2 Range - Rows

Access paths for the rows of entire table columns:

= Application 2 Workbooks = Item = Sheets 2 Item = Columns = Item = Rows
= Application 2 Workbooks = ActiveSheet 2 Columns = Item = Rows

= Application = ActiveWorkbook = ActiveSheet 2 Columns = Item = Rows

= Application = ActiveSheet 2 Columns = Item = Rows

= Application = Columns = Item = Rows

Access paths for the rows in the currently selected cells:

= Application 2 Workbooks = Item = Sheets =2 Item = Selection 2 Rows
= Application 2 Workbooks = ActiveSheet = Selection 2 Rows

= Application 2 ActiveWorkbook = ActiveSheet = Selection 2 Rows

= Application 2 ActiveSheet = Selection 2 Rows

= Application = Selection > Rows

BasicMaker and PlanMaker

n Description

Rows is a collection of all rows in a worksheet or range. The individual elements of this collection are of the
type Range, which allows you to apply all properties and methods available for Range objects to them.

E Access to the object

Rows can be a child object of two different objects:

= As a child object of a Sheet object, it represents all rows of this worksheet.
= As a child object of a Range object, it represents all rows of this range.

Examples for Rows as a child object of a Sheet object:

' Display the number of rows in the current worksheet
MsgBox pm.ActiveSheet.Rows.Count

' Format the first row in the worksheet in boldface
pm.ActiveSheet.Rows (1) .Font.Bold = True

Examples for Rows as a child object of a Range object:

' Display the number of rows in the specified range
MsgBox pm.ActiveSheet.Range ("Al:F50") .Rows.Count

' Format the first row in a range in boldface
pm.ActiveSheet.Range ("A1:F50") .Rows (1) .Font.Bold = True

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Range (default object)
= Application — Application

= Parent — Sheet or Range

Count (property, R/0)
Data type: Long

Returns the number of Range objects in the Rows collection — in other words: the number of the rows in the
worksheet or range.

Item (pointer to object)

Data type: Object

BasicMaker and PlanMaker

Returns an individual Range object, i.e. a range that contains one individual row.

Which Range object you get depends on the numeric value that you pass to Item: 1 for the first row, 2 for the
second, etc.

Example:
' Set the font for the second row of the worksheet to Courier New

pm.ActiveSheet.Rows.Item(2) .Font.Name = "Courier New"

Application (pointer to object)

Returns the Application object.

Parent (pointer to object)

Returns the parent object, i.e. an object that is either of the type Sheet or Range .

Columns (collection)

Access paths for the columns of a worksheet:

= Application 2 Workbooks = Item = Sheets 2 Item = Columns
= Application 2 Workbooks = Item = ActiveSheet 2 Columns

= Application = ActiveWorkbook = ActiveSheet 2 Columns

= Application = ActiveSheet 2 Columns

= Application - Columns

Access paths for the columns of arbitrary ranges:

= Application 2 Workbooks = Item = Sheets =2 Item = Range = Columns
= Application 2 Workbooks = ActiveSheet 2 Range - Columns

= Application 2 ActiveWorkbook = ActiveSheet 2 Range 2 Columns

= Application 2 ActiveSheet 2 Range = Columns

= Application 2 Range - Columns

Access paths for the columns of entire table columns:

= Application = Workbooks = Item = Sheets = Item = Rows = Item = Columns
= Application 2 Workbooks = ActiveSheet 2 Rows = Item = Columns

= Application = ActiveWorkbook = ActiveSheet 2> Rows—> Item = Columns

= Application = ActiveSheet 2 Rows—> Item = Columns

= Application = Rows=> Item = Columns

Access paths for the columns in the currently selected cells:

= Application 2 Workbooks = Item = Sheets = Item = Selection 2 Columns
= Application 2 Workbooks = ActiveSheet = Selection 2 Columns

= Application 2 ActiveWorkbook = ActiveSheet = Selection 2 Columns

= Application 2 ActiveSheet = Selection 2 Columns

= Application 2 Selection 2 Columns

BasicMaker and PlanMaker

n Description

Columns is a collection of all columns in a worksheet or range. The individual elements of this collection are
of the type Range, which allows you to apply all properties and methods available for Range objects to them.

E Access to the object

Columns can be the child object of two different objects:

= As a child object of a Sheet object, it represents all columns of this worksheet.
= As a child object of a Range object, it represents all columns of this range.

Examples for Columns as a child object of a Sheet object:

' Display the number of columns in the current worksheet
MsgBox pm.ActiveSheet.Columns.Count

' Format the first column in the worksheet in boldface
pm.ActiveSheet.Columns (1) .Font.Bold = True

Examples for Columns as a child object of a Range object:

' Display the number of columns in the specified range
MsgBox pm.ActiveSheet.Range ("Al:F50") .Columns.Count

' Format the first column in a range in boldface
pm.ActiveSheet.Range ("Al:F50") .Columns (1) .Font.Bold = True

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Range (default object)
= Application — Application

= Parent — Sheet or Range

Count (property, R/0)
Data type: Long

Returns the number of Range objects in the Columns collection — in other words: the number of the columns in
the worksheet or range.

Item (pointer to object)

Data type: Object

BasicMaker and PlanMaker

Returns an individual Range object, i.e. a range that contains one individual column.

Which Range object you get depends on the numeric value that you pass to Item: 1 for the first column, 2 for
the second, etc.

Example:

A}

Set the font for second column in the worksheet to Courier New
pm.ActiveSheet.Columns.Item(2) .Font.Name = "Courier New"

Application (pointer to object)

Returns the Application object.

Parent (pointer to object)

Returns the parent object, i.e. an object that is either of the type Sheet or Range .

NumberFormatting (object)

Access paths:

= Application = Workbooks = Item = Sheets = Item = Range = NumberFormatting
= Application = Workbooks = ActiveSheet = Range > NumberFormatting

= Application = ActiveWorkbook = ActiveSheet > Range > NumberFormatting

= Application = ActiveSheet = Range > NumberFormatting

Instead of "Range", you can also use other objects and properties that return a Range-object: ActiveCell, Selection, Rows(n), Columns(n) and Cells(x,
¥). You can find examples of these access paths in the Range-Object.

n Description

You can use the NumberFormatting object to read and change the number format of a range (corresponding to
the options on the Number format tab in the dialog box for the cell properties).

E Access to the object

NumberFormatting is a child object of the Range object — for each Range object there is exactly one
NumberFormatting object.

ﬂ Properties, objects, collections and methods

Properties:

= Type (default property)
= DateFormat

= CustomFormat

BasicMaker and PlanMaker

= Currency

= Accounting

= Digits

= NegativeRed

= SuppressMinus

= SuppressZeros

= ThousandsSeparator

Objects:
= Application — Application
= Parent — Range

Type (property)
Data type: Long (PmNumberFormatting)

Gets or sets the number format for the cells in the range. The possible values are:

pmNumberGeneral 0 ' Standard
pmNumberDecimal = 1 ' Number
pmNumberScientific = 2 ' Scientific
pmNumberFraction = 3 ' Fraction (see also Digits property)
pmNumberDate = 4 ' Date/Time (see note)
pmNumberPercentage = 5 ' Percentage
pmNumberCurrency = 6 ' Currency (see note)
pmNumberBoolean = 7 ' Boolean
pmNumberCustom = 8 ' Custom (see note)
pmNumberText = 9 ' Text
pmNumberAccounting = 10 ' Accounting (see note)

Note: The formats pmNumberDate, pmNumberCurrency, pmNumberAccounting and pmNumberCustom
can only be read, but not set. To apply one of these formats, use the properties DateFormat, Currency,
Accounting and CustomFormat (see below).

DateFormat (property)

Data type: String
Gets or sets the date/time format for the cells in the range.

Example:

' Format cell Al as a date
pm.ActiveSheet.Range ("Al") .NumberFormatting.DateFormat = "YYYY-MM-DD"

For details on the format codes supported, see the online help for PlanMaker, keyword "User-defined number
formats".

Note: The letter codes for the components of a date format are language-specific. If PlanMaker is running with
its English user interface, e.g. DD/MM/YYYY is a valid date format. If the German user interface is used,
TT.MM.JJJJ has to be used, with the French user interface it has to be JJMM.AAAA, etc.

If you would like to retrieve the date string used in a cell, you must first check if the cell is formatted as a date
at all — otherwise this property fails:

BasicMaker and PlanMaker

' Display the date string of cell Al
With pm.ActiveSheet.Range ("A1")
If .NumberFormatting.Type = pmNumberDate Then
MsgBox .NumberFormatting.DateFormat

Else
MsgBox "Cell Al is not formatted as a date."
End If
End With
CustomFormat (property)

Data type: String

Gets or sets the user-defined formatting for the cells in the range.

Example:

' Format cell Al with a used-defined format
pm.ActiveSheet.Range ("Al") .NumberFormatting.CustomFormat = "000000"

Currency (property)
Data type: String
Gets or sets the currency format for the cells in the range.

Use an ISO code to specify the desired currency. When you read this property, it will return an ISO code as
well. Some popular ISO codes:

EUR Euro

UsD US dollar

CAD Canadian dollar
AUD Australian dollar
JPY Japanese yen

RUB Russian ruble

CHF Swiss franc

You can find a complete list of ISO codes (PlanMaker supports many of them, but not all) in the following
Wikipedia article: http://en.wikipedia.org/wiki/ISO 4217

Example:

' Format cell Al as euro
pm.ActiveSheet.Range ("Al") .NumberFormatting.Currency = "EUR"

To retrieve the currency string used in a cell, you must first check if the cell is formatted as a currency at all —
otherwise this property fails:

' Display the currency string of cell Al
With pm.ActiveSheet.Range ("Al")
If .NumberFormatting.Type = pmNumberCurrency Then
MsgBox .NumberFormatting.Currency
Else

MsgBox "Cell Al is not formatted as a currency."
End If

http://en.wikipedia.org/wiki/ISO_4217

BasicMaker and PlanMaker

End With

Accounting (property)
Data type: String
Gets or sets the accounting format of the cells in the range.

Exactly like for the property Currency (see there), you pass the ISO code of the desired currency to this
property. When you read this property, it will return an ISO code as well.

Example:

' Format cell Al in the accounting format with the currency "euro"
pm.ActiveSheet.Range ("Al") .NumberFormatting.Accounting = "EUR"

To retrieve the currency string used in a cell, you must first check if the cell is formatted in Accounting number
format at all — otherwise this property fails:

' Display the currency string of cell Al (formatted in Accounting format)

With pm.ActiveSheet.Range ("Al")
If .NumberFormatting.Type = pmNumberAccounting Then
MsgBox .NumberFormatting.Accounting

Else
MsgBox "Cell Al is not formatted in Accounting format."

End If
End With

Digits (property)

Data type: Long

Gets or sets the number of the digits right of the decimal separator for the cells in the range.
This property can be used with the following number formats:

= Number (pmNumberDecimal)

= Scientific (pmNumberScientific)

= Percent (pmNumberPercentage)

= Currency (pmNumberCurrency)

= Accounting (pmNumberAccounting)

Example:

' Set cell Al to 4 decimal places
pm.ActiveSheet.Range ("Al") .NumberFormatting.Digits = 4

You can also use this property with the number format "Fraction" (pmNumberFraction), but in this case it sets
the denominator of the fraction:

BasicMaker and PlanMaker

' Format the cell Al as a fraction with the denominator 8
With pm.ActiveSheet.Range ("A1")
.NumberFormatting.Type = pmNumberFraction
.NumberFormatting.Digits = 8
End With

For the number format "fraction" Digits may be between 0 and 1000, for all other number formats between 0
and 15.

NegativeRed (property)

Data type: Boolean

Gets or sets the setting "Negative numbers in red" for the cells of the range, corresponding to the option of the
same name on the Number format tab in the dialog box for the cell properties.

SuppressMinus (property)

Data type: Boolean

Gets or sets the setting "Suppress minus sign" for the cells of the range, corresponding to the option of the same
name on the Number format tab in the dialog box for the cell properties.

SuppressZeros (property)

Data type: Boolean

Gets or sets the setting "Don't show zero" for the cells of the range, corresponding to the option of the same
name on the Number format tab in the dialog box for the cell properties.

ThousandsSeparator (property)

Data type: Boolean

Gets or sets the setting "Thousands separator"” for the cells of the range, corresponding to the option of the same
name on the Number format tab in the dialog box for the cell properties.

Application (pointer to object)

Returns the Application object.

Parent (pointer to object)

Returns the parent object, i.e. an object of the type Range.

BasicMaker and PlanMaker

An example for the NumberFormatting object

In the following example, the range from A1 to C3 will be formatted as percentage values with two decimal
places:

Sub Main
Dim pm as Object

Set pm = CreateObject ("PlanMaker.Application™")
pm.Visible = True

With pm.ActiveSheet.Range ("A1:C3")
.NumberFormatting.Type = pmNumberPercentage
.NumberFormatting.Digits = 2

End With

Set pm = Nothing
End Sub

Font (object)

Access paths:

= Application 2 Workbooks = Item = Sheets =2 Item = Range = Font
= Application 2 Workbooks = ActiveSheet 2 Range = Font

= Application 2 ActiveWorkbook = ActiveSheet 2 Range = Font

= Application 2 ActiveSheet 2 Range = Font

Instead of "Range", you can also use other objects and properties that return a Range-object: ActiveCell, Selection, Rows(n), Columns(n) and Cells(x,
y). You can find examples of these access paths in the Range-Object.

ﬂ Description

The Font object describes the character formatting (font, text color, underline, etc.) of cells.

ﬂ Access to the object

The Font object is a child object of a Range object and represents the character formatting of cells in this range,
corresponding to the Character formatting dialog box.

Example:
' Show the name of the font used in cell Al

MsgBox pm.ActiveSheet.Range ("Al") .Font.Name

B Properties, objects, collections and methods

Properties:
= Name (default property)

BasicMaker and PlanMaker

= Size

= Bold

= Italic

= Underline

= StrikeThrough
= Superscript

= Subscript

= AllCaps

= SmallCaps

= PreferredSmallCaps
= Blink

= Color

= ColorIndex

= BColor

= BColorIndex
= Spacing

= Pitch

Objects:
= Application — Application
= Parent — Range

Name (property)
Data type: String
Gets or sets the font name (as a string).

If the cells are formatted in different typefaces, an empty string will be returned.

Size (property)

Data type: Single

Gets or sets the font size in points (pt).

If the cells are formatted in different font sizes, the constant smoUndefined (9,999,999) will be returned.

Example:

' Set the font size of the currently selected cells to 10.3 pt
pm.ActiveSheet.Selection.Font.Size = 10.3

Bold (property)
Data type: Long
Gets or sets the character formatting "Boldface":

= True: Boldface on

= False: Boldface off

BasicMaker and PlanMaker

= smoUndefined (only when reading): The cells are partly bold and partly not.

Italic (property)

Data type: Long

Gets or sets the character formatting "Italic":
= True: Italic on

= False: Italic off

= smoUndefined (only when reading): The cells are partly italic and partly not.

Underline (property)
Data type: Long (PmUnderline)

Gets or sets the character formatting "Underline". The following values are allowed:

pmUnderlineNone = 0 ' off

pmUnderlineSingle = 1 ' single underline
pmUnderlineDouble = 2 ' double underline
pmUnderlineWords = 3 ' word underline
pmUnderlineWordsDouble = 4 ' double word underline

When you read this property and the cells are partly underlined and partly not, smoUndefined is returned.

StrikeThrough (property)

Data type: Long

Gets or sets the character formatting "Strike Through":
= True: Strike through on

= False: Strike through off

= smoUndefined (only when reading): The cells are partly stroke through and partly not.

Superscript (property)
Data type: Long
Gets or sets the character formatting "Superscript":
= True: Strike through on
= False: Strike through off

= smoUndefined (only when reading): The cells are partly superscripted and partly not.

BasicMaker and PlanMaker

Subscript (property)

Data type: Long

Gets or sets the character formatting "Subscript":
= True: Strike through on

= False: Strike through off
= smoUndefined (only when reading): The cells are partly subscripted and partly not.

AliCaps (property)

Data type: Long

Gets or sets the character formatting "All caps":
= True: All caps on

= False: All caps off

= smoUndefined (only when reading): Some of the cells are formatted in "All caps", some not.

SmallCaps (property)

Data type: Long

Gets or sets the character formatting "Small caps":
= True: Small caps on

= False: Small caps off

= smoUndefined (only when reading): Some of the cells are formatted in "Small caps", some not.

PreferredSmallCaps (property)

Data type: Long

Gets or sets the character formatting "Small caps", but unlike the SmallCaps property, lets you choose the scale
factor. The value 0 turns SmallCaps off, all other values represent the percental scale factor of the small

capitals.
Example:

' Format the current cell in small capitals with 75% of size
pm.ActiveCell.Font.PreferredSmallCaps = 75

' Deactivate the SmallCaps formatting
pm.ActiveCell.Font.PreferredSmallCaps = 0O

BasicMaker and PlanMaker

Blink (property)

Data type: Long

Gets or sets the character formatting "Blink" (obsolete):
* True: Blink on

= False: Blink off

= smoUndefined (only when reading): The cells are partly blinking and partly not.

Color (property)

Data type: Long (SmoColor)

Gets or sets the foreground color of text as a "BGR" value (Blue-Green-Red triplet). You can either indicate an
arbitrary value or use one of the pre-defined BGR color constants.

If the cells are formatted in different colors, the constant smoUndefined will be returned when you read this
property.

Colorindex (property)
Data type: Long (SmoColorIndex)

Gets or sets the foreground color of text as an index color. "Index colors" are the standard colors of PlanMaker,
consecutively numbered from 0 for black to 15 for light gray. You may use the values shown in the Index colors
table.

If the cells are formatted in different colors or in a color that is not an index color, the constant smoUndefined
will be returned when you read this property.

Note: It is recommended to use the Color property (see above) instead of this one, since it is not limited to the
standard colors but enables you to access the entire BGR color palette.

BColor (property)

Data type: Long (SmoColor)

Gets or sets the background color of text as a "BGR" value (Blue-Green-Red triplet). You can either indicate an
arbitrary value or use one of the pre-defined BGR color constants.

If the cells are formatted in different colors, the constant smoUndefined will be returned when you read this
property.

BColorindex (property)

Data type: Long (SmoColorIndex)

BasicMaker and PlanMaker

Gets or sets the background color of text as an index color. "Index colors" are the standard colors of PlanMaker,
consecutively numbered from 0 for black to 15 for light gray. You may use the values shown in the Index colors
table.

If the cells are formatted in different colors or in a color that is not an index color, the constant smoUndefined
will be returned when you read this property.

Note: It is recommended to use the BColor property (see above) instead of this one, since it is not limited to the
standard colors but enables you to access the entire BGR color palette.

Spacing (property)
Data type: Long
Gets or sets the character spacing. The standard value is 100 (normal character spacing of 100%).

If you are reading this property and the cells are formatted in different character spacings, the constant
smoUndefined will be returned.

Pitch (property)
Data type: Long
Gets or sets the character pitch. The standard value is 100 (normal character pitch of 100%).

If you are reading this property and the cells are formatted in different character pitches, the constant
smoUndefined will be returned.

Note that some printers ignore changes to the character pitch for their internal fonts.

Application (pointer to object)

Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Range.

Example for the Font object

In the following example, cells Al to C3 will be formatted in Times New Roman, bold, 24 points.

Sub Main
Dim pm as Object

Set pm = CreateObject ("PlanMaker.Application")
pm.Visible = True

BasicMaker and PlanMaker

With pm.ActiveSheet.Range ("Al:C3")

.Font.Name = "Times New Roman"
.Font.Size = 24
.Font.Bold = True

End With

Set pm = Nothing
End Sub

Borders (collection)

Access paths:

= Application = Workbooks = Item = Sheets = Item = Range = Borders
= Application 2 Workbooks = ActiveSheet - Range = Borders

= Application = ActiveWorkbook = ActiveSheet = Range = Borders

= Application = ActiveSheet = Range = Borders

Instead of "Range", you can also use other objects and properties that return a Range-object: ActiveCell, Selection, Rows(n), Columns(n) and Cells(x,
¥). You can find examples of these access paths in the Range-Object.

n Description

The Borders collection represents the four border lines of cells (left, right, top and bottom). You can use this
collection to get or change the line settings (thickness, color, etc.) of each border line.

The individual elements of the Borders collection are of the type Border.

The parameter you pass to the Borders collection is the number of the border line you want to access:

pmBorderTop = -1 ' Top border line
pmBorderLeft = -2 ' Left border line
pmBorderBottom = -3 ' Bottom border line
pmBorderRight = -4 ' Right border line
pmBorderHorizontal = -5 ' Horizontal grid lines
pmBorderVertical = -6 ' Vertical grid lines

Example:

' Set the color of the left line of cell Al to red
pm.ActiveSheet.Range ("Al") .Borders (pmBorderLeft) .Color = smoColorRed

ﬂ Access to the object

As a child object of a Range object, Borders represents the border lines of the cells in the given range,
corresponding to the ribbon command Home | group Format | Borders.

Example:

' Draw a bottom border for the cell Al
pm.ActiveSheet.Range ("Al") .Borders (pmBorderBottom) .Type = pmLineStyleSingle

BasicMaker and PlanMaker

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Border (default object)
= Application — Application

= Parent — Range

Count (property, R/0)
Data type: Long

Returns the number of Border objects in the collection, i.e. the number of possible border lines. This value is
always 4 because there are four borders (left, right, top and bottom).

Item (pointer to object)
Data type: Object

Returns an individual Border object that you can use to get or set the properties (such as color and thickness)
of one individual border line.

Which Border object you get depends on the numeric value that you pass to Item. The following table shows
the admissible values:

pmBorderTop = -1 ' Top border line
pmBorderLeft = -2 ' Left border line
pmBorderBottom = -3 ' Bottom border line
pmBorderRight = -4 ' Right border line
pmBorderHorizontal = -5 ' Horizontal grid lines
pmBorderVertical = -6 ' Vertical grid lines

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Range.

BasicMaker and PlanMaker

Example for the Borders object

In the following example, a 4 point thick blue line will be applied to the left border of the range from B2 to D4.
Then, a thin red double line will be applied to the right border.

Sub Main
Dim pm as Object

Set pm = CreateObject ("PlanMaker.Application™")
pm.Visible = True

With pm.ActiveSheet.Range ("B2:D4")
.Borders (pmBorderLeft) . Type pmLineStyleSingle
.Borders (pmBorderLeft) .Thickl 4
.Borders (pmBorderLeft) .Color = pmColorBlue

.Borders (pmBorderRight

(

(

(

) . Type = pmLineStyleDouble
.Borders (pmBorderRight) .Thickl = 1
.Borders (pmBorderRight) .Thick2 = 1
.Borders (pmBorderRight) .Color = smoColorRed

End With

Set pm = Nothing
End Sub

Border (object)

Access paths:

= Application 2 Workbooks = Item = Sheets = Item = Range = Borders = Item
= Application 2 Workbooks = ActiveSheet 2 Range = Borders = Item

= Application 2 ActiveWorkbook = ActiveSheet 2 Range = Borders = Item

= Application 2 ActiveSheet 2 Range = Borders = Item

Instead of "Range", you can also use other objects and properties that return a Range-object: ActiveCell, Selection, Rows(n), Columns(n) and Cells(x,
y). You can find examples of these access paths in the Range-Object.

ﬂ Description

A Border object represents one of the border lines of cells (e.g. the upper, lower, left or right line). You can use
this object to get or change the line settings (thickness, color, etc.) of a border line.

ﬂ Access to the object

The individual Border objects can only be accessed via the Borders collection. As a child object of a Range
object, BordersItem(n) represents a border line of the cells in the given range, corresponding to the ribbon
command Home | group Format | Borders.

To specify which of the lines in a Borders collection you want to edit (left, right, top, bottom, etc.), pass the
number of that line (or the corresponding constant) as a parameter according to the following table:

BasicMaker and PlanMaker

pmBorderTop = -1 ' Top border line
pmBorderLeft = -2 ' Left border line
pmBorderBottom = -3 ' Bottom border line
pmBorderRight = -4 ' Right border line
pmBorderHorizontal = -5 ' Horizontal grid lines
pmBorderVertical = -6 ' Vertical grid lines
Example:

' Draw a bottom border for the cell Al
pm.ActiveSheet.Range ("Al") .Borders (pmBorderBottom) .Type = pmLineStyleSingle

ﬂ Properties, objects, collections and methods

Properties:

= Type (default property)
= Thickl

= Thick2

= Separator

= Color

= ColorIndex

Objects:
= Application — Application
= Parent — Borders

Type (property)
Data type: Long (PmLineStyle)

Gets or sets the type of the border line. The possible values are:

pmLineStyleNone = 0 ' No border
pmLineStyleSingle = 1 ' Simple border
pmLineStyleDouble 2 ' Double border

Thick1 (property)
Data type: Single

Gets or sets the thickness of the first border line in points (1 point corresponds to 1/72 inches).

Thick2 (property)

Data type: Single

Gets or sets the thickness of the second border line in points (1 point corresponds to 1/72 inches).
This property is used only if the type of the border is set to pmLineStyleDouble.

Thickl, Thick2 and Separator taken together may not be greater than 12.

BasicMaker and PlanMaker

Separator (property)

Data type: Single

Gets or sets the offset between two border lines in points (1 point corresponds to 1/72 inches).
This property is used only if the type of the border is set to pmLineStyleDouble.

Thickl, Thick2 and Separator taken together may not be greater than 12.

Color (property)

Data type: Long (SmoColor)

Gets or sets the color of the border line(s) as a "BGR" value (Blue-Green-Red triplet). You can either indicate
an arbitrary value or use one of the pre-defined BGR color constants.

Colorindex (property)

Data type: Long (SmoColorIndex)

Gets or sets the color of the border line(s) as an index color. "Index colors" are the standard colors of
PlanMaker, consecutively numbered from O for black to 15 for light gray. You may use the values shown in the
Index colors table.

Note: It is recommended to use the Color property (see above) instead of this one, since it is not limited to the
standard colors but enables you to access the entire BGR color palette.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Borders.

Shading (object)

Access paths:

= Application = Workbooks = Item = Sheets = Item = Range - Shading
= Application = Workbooks = ActiveSheet = Range = Shading

= Application = ActiveWorkbook = ActiveSheet > Range = Shading

BasicMaker and PlanMaker

= Application = ActiveSheet - Range - Shading

Instead of "Range", you can also use other objects and properties that return a Range-object: ActiveCell, Selection, Rows(n), Columns(n) and Cells(x,
y). You can find examples of these access paths in the Range-Object.

ﬂ Description

The Shading object represents the shading of cells (with either a shading or a pattern).

ﬂ Access to the object

The Shading object is a child object of a Range object and represents the shading of the cells in the given
range, which was applied using the ribbon command Home | group Format | Shading, for example.

Example:

' Show the pattern of cell Al
MsgBox pm.ActiveSheet.Range ("Al") .Shading.Texture

ﬂ Properties, objects, collections and methods

Properties:

= Texture

= Intensity

= ForegroundPatternColor (default property)
* ForegroundPatternColorIndex

= BackgroundPatternColor

= BackgroundPatternColorIndex

Objects:
= Application — Application
= Parent — Range

Texture (property)
Data type: Long (SmoShadePatterns)

Gets or sets the fill pattern for the shading. The possible values are:

smoPatternNone = 0 (no shading)
smoPatternHalftone = 1 (shading)

[
smoPatternRightDiagCoarse = 2 ’A

N
smoPatternLeftDiagCoarse = 3 &

o)
smoPatternHashDiagCoarse = 4 [
smoPatternVertCoarse = 5 I:I:I:I:I
smoPatternHorzCoarse = 6 g
smoPatternHashCoarse = 7 @

BasicMaker and PlanMaker

smoPatternRightDiagFine

smoPatternLeftDiagFine

smoPatternHashDiagFine
smoPatternVertFine =

smoPatternHorzFine =

smoPatternHashFine =
To add a shading, set the Texture property to smoPatternHalftone and specify the required intensity of
shading with the Intensity property.

To add a pattern, set the Texture property to one of the values between smoPatternRightDiagCoarse and
smoPatternHashFine.

To remove an existing shading or pattern, set the Texture property to smoPatternNone.

Intensity (property)

Data type: Long

Gets or sets the intensity of the shading.

The possible values are between 0 and 100 (percent).

This value can be set or get only if a shading was chosen with the Texture property (i.c., the Texture property
was set to smoPatternHalftone). If a pattern was chosen (i.e., the Texture property has any other value),
accessing the Intensity property fails.

ForegroundPatternColor (property)

Data type: Long (SmoColor)

Gets or sets the foreground color for the shading or pattern as a "BGR" value (Blue-Green-Red triplet). You can
either indicate an arbitrary value or use one of the pre-defined BGR color constants.

ForegroundPatternColorindex (property)
Data type: Long (SmoColorIndex)

Gets or sets the foreground color for the shading or pattern as an index color. "Index colors" are the standard
colors of PlanMaker, consecutively numbered from 0 for black to 15 for light gray. You may use the values
shown in the Index colors table.

It is recommended to use the ForegroundPatternColor property (see above) instead of this one, since it is not
limited to the 16 standard colors but enables you to access the entire BGR color palette.

BackgroundPatternColor (property)

Data type: Long (SmoColor)

BasicMaker and PlanMaker

Gets or sets the background color for the shading or pattern as a "BGR" value (Blue-Green-Red triplet). You
can either indicate an arbitrary value or use one of the pre-defined BGR color constants.

BackgroundPatternColorindex (property)

Data type: Long (SmoColorIndex)

Gets or sets the background color for the shading or pattern as an index color. "Index colors" are the standard
colors of PlanMaker, consecutively numbered from 0 for black to 15 for light gray. You may use the values
shown in the Index colors table.

It is recommended to use the BackgroundPatternColor property (see above) instead of this one, since it is not
limited to the 16 standard colors but enables you to access the entire BGR color palette.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Range.

Example for the Shading object
In the following example a 50% red shading will be applied to the range from A1 to C3.

Sub Main
Dim pm as Object

Set pm = CreateObject ("PlanMaker.Application")
pm.Visible = True

With pm.ActiveSheet.Range ("Al:C3")
.Shading.Intensity = 50
.Shading.ForegroundPatternColor = smoColorRed

End With

Set pm = Nothing
End Sub

Validation (object)

Access paths:
= Application = Workbooks = Item = Sheets = Item = Range = Validation

BasicMaker and PlanMaker

= Application = Workbooks = ActiveSheet = Range = Validation
= Application = ActiveWorkbook = ActiveSheet = Range = Validation
= Application = ActiveSheet 2 Range = Validation

Instead of "Range", you can also use other objects and properties that return a Range-object: ActiveCell, Selection, Rows(n), Columns(n) and Cells(x,
y). You can find examples of these access paths in the Range-Object.

ﬂ Description

The Validation object represents the validation check of a range (that is, a Range object). In PlanMaker, such
validation checks can be set up with the ribbon command Review | Input validation.

ﬂ Access to the object
Each Range object has exactly one instance of the Validation object. It is accessed through Range.Validation:

' Display the input message for cell Al
MsgBox pm.ActiveSheet.Range ("Al") .Validation.InputMessage

ﬂ Properties, objects, collections and methods

Properties:

= Type R/O

= AlertStyle

* Value R/O

= ShowInput

= InputTitle

= InputMessage
= ShowError

= ErrorTitle

= ErrorMessage
= Operator R/O
= Formulal R/O
= Formula2 R/O
* InCellDropDown
= IgnoreBlank

Objects:
= Application — Application
= Parent — Range

Methods:
= Add

= Modify
= Delete

Type (property, R/0)
Data type: Long (PmDVType)

BasicMaker and PlanMaker

Gets or sets the setting which type of values to allow. The possible values are:

pmValidateInputOnly 0 ' Allow all types of values
pmValidateWholeNumber = 1 ' Allow only integer numbers
pmValidateDecimal = 2 ' Allow only decimal numbers
pmValidatelist = 3 ' Allow only values from a pre-defined list
pmValidateDate = 4 ' Allow only date values

pmValidateTime = 5 ' Allow only time values
pmValidateTextLength = 6 ' Allow only values of a certain length
pmValidateCustom = 7 ' User-defined check

AlertStyle (property)

Data type: Long (PmDV AlertStyle)

Gets or sets the style of the error message for invalid values.

pmValidAlertStop = 0 ' Error message
pmValidAlertWarning = 1 ' Warning message
pmValidAlertInformation = 2 ' Information message

Value (property, R/0)
Data type: Boolean

Returns True, when the range contains valid values (i.e. values passing the input validation check), else False.

Showlnput (property)

Data type: Long

Gets or sets the setting if an input message should be displayed when the cell is activated. Corresponds to the
setting "Show input message when cell is selected" on the Input message tab in the dialog box of the ribbon
command Review | Input validation.

InputTitle (property)
Data type: String

Gets or sets the title of the input message that appears when the cell is activated. Corresponds to the entry field
"Title" on the Input message tab in the dialog box of the ribbon command Review | Input validation.

InputMessage (property)
Data type: String

Gets or sets the text of the input message that appears when the cell is activated. Corresponds to the entry field
"Message" on the Input message tab in the dialog box of the ribbon command Review | Input validation.

BasicMaker and PlanMaker

ShowError (property)

Data type: Long

Gets or sets the setting whether a message should be displayed when a value that do not pass the input
validation check is entered into the cell. Corresponds to the setting "Show error message after invalid data is
entered" on the Error message tab in the dialog box of the ribbon command Review | Input validation.

ErrorTitle (property)
Data type: String

Gets or sets the title of the message that is displayed when an invalid value is entered into the cell. Corresponds
to the entry field "Title" on the Error message tab in the dialog box of the ribbon command Review | Input
validation.

ErrorMessage (property)

Data type: String

Gets or sets the title of the message that is displayed when an invalid value is entered into the cell. Corresponds
to the entry field "Message" on the Error message tab in the dialog box of the ribbon command Review |
Input validation.

Operator (property, R/0)
Data type: Long (PmDVOperator)

Gets or sets the comparison operator used by the input validation check.

pmDVBetween = 0 ' is between

pmDVNotBetween = 1 ' is not between

pmDVEqual = 2 ' is equal to

pmDVNotEqual 3 ' is not equal to
pmDVGreater = 4 ' is greater than

pmDVLess = 5 ' is less than
pmDVGreaterEqual = 6 ' is greater than or equal to
pmDVLessEqual 7 ' is less than or equal to
Formulal (property, R/0)

Data type: String

Returns the minimum of the validation check for the operators pmDVBetween and pmDVNotBetween. For all
other operators, it returns the value.

Formula2 (property, R/0)

Data type: String

BasicMaker and PlanMaker

Returns the maximum of the validity check for the operators pmDVBetween and pmDVNotBetween, for all
other operators the return value is empty.

InCellDropDown (property)

Data type: Long

Gets or sets the setting whether a list of the allowed values should be displayed in the cell. Applicable only
when the type of validation check (see Type property above) is set to "List entries" (pmValidateList).

Corresponds to the option "Use dropdown" in the dialog box of the ribbon command Check | Validation.

IgnoreBlank (property)
Data type: Long

Gets or sets the setting whether empty cells should be ignored by the input validation check. Corresponds to the
setting "Ignore empty cells" in the dialog box of the ribbon command Check | Validation.

Application (pointer to object)

Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type Range.

Add (method)

Sets up a new validity check in an area. Corresponds to the ribbon command Check | Validation.
Please note that each cell cannot have more than one input validation check.
Syntax:

Add Type, [AlertStyle], [Operator], [Formulal], [FormulaZ2]
Parameters:

Type (type: Long or PmDVType) determines the type of input validation check. The possible values
are:

pmValidateInputOnly 0 ' Allow all types of values *
pmValidateWholeNumber 1 " Allow only integer numbers
pmValidateDecimal = 2 ' Allow only decimal numbers

pmValidateList = 3 ' Allow only values from a pre-defined list **
pmValidateDate = 4 ' Allow only date values
pmValidateTime = 5 ' Allow only times values

BasicMaker and PlanMaker

pmValidateTextLength = 6 ' Allow only values of a certain length
pmValidateCustom = 7 ' User-defined check **x*

* With this setting, all values are accepted. Use it if you merely want an input message to appear when
the user activates the affected cell(s).

** With this setting, only the values specified in a list of allowed values are accepted. Use the parameter
Formulal to specify the range containing this list. For example, if the cells C1 through C3 hold the

values "dog", "cat" and "mouse" and you enter C1:C3 for Formulal, only these three values will be
allowed.

#% When using this setting, you must specify in Formulal an expression that returns True for valid
entries, or False for invalid entries.

AlertStyle (type: Long or PmDV AlertStyle) specifies the style of the error message for invalid values:

pmValidAlertStop = 0 ' Error message
pmValidAlertWarning = 1 ' Warning message
pmValidAlertInformation = 2 ' Information message

Operator (type: Long or PmDVOperator) specifies the comparison operator used by the input
validation check:

pmDVBetween = 0 ' is between

pmDVNotBetween =1 ' is not between

pmDVEqual = 2 ' is equal to

pmDVNotEqual = 3 ' is not equal to
pmDVGreater = 4 ' is greater than

pmDVLess =5 ' is less than
pmDVGreaterEqual = 6 ' is greater than or equal to
pmDVLessEqual = 7 ' is less than or equal to

Formulal (optional; type: String) defines a string containing a number, a reference to a cell, or a
formula. For pmDVBetween and pmDVNotBetween it specifies the minimum, for all other operators
the value.

Formula2 (optional; type: String) defines a string containing a number, a reference to a cell, or a
formula. Must be specified only if pmDVBetween or pmDVNotBetween are used.

Return type:

none

Summary of all parameter combinations possible:

Type Operator Formulal Formula2
pmValidateInputOnly (not used) (not used) (not used)
pmValidateWholeNumber, All of the above Contains the minimum for May only be used with
pmValidateDecimal, pmDVBetween and pmDVBetween and
pmValidateDate, pmDVNotBetween and the pmDVNotBetween and
pmValidateTime, value for all other then contains the maximum.
pmValidateTextLength operators.

BasicMaker and PlanMaker

pmValidateList (not used) A list of values, separated (not used)
by the system list separator,
or a cell reference

pmValidateCustom (not used) An expression that returns (not used)
True for inputs that are to
be considered valid,
otherwise returns False

Modify (method)

Modifies the input validation for a range.

Syntax:

Modify [Type], [AlertStyle], [Operator], [Formulal], [Formula2]
Parameters:

Type (type: Long or PmDVType) determines the type of input validation check. The possible values

arc:

pmValidateInputOnly =0 ' Allow all types of values *
pmValidateWholeNumber = 1 ' Allow only integer numbers

pmValidateDecimal = 2 ' Allow only decimal numbers

pmValidateList = 3 ' Allow only values from a pre-defined list **
pmValidateDate =4 ' Allow only date values

pmValidateTime = 5 ' Allow only times values
pmValidateTextLength = 6 ' Allow only values of a certain length
pmValidateCustom = 7 ' User-defined check **x*

* With this setting, all values are accepted. Use it if you merely want an input message to appear when
the user activates the affected cell(s).

** With this setting, only the values specified in a list of allowed values are accepted. Use the parameter
Formulal to specify the range containing this list. For example, if the cells C1 through C3 hold the
values "dog", "cat" and "mouse" and you enter C1:C3 for Formulal, only these three values will be
allowed.

*#% When using this setting, you must specify in Formulal an expression that returns True for valid
entries, or False for invalid entries.

AlertStyle (type: Long or PmDV AlertStyle) specifies the style of the error message for invalid values:

pmValidAlertStop = 0 ' Error message
pmValidAlertWarning = 1 ' Warning message
pmValidAlertInformation = 2 ' Information message

Operator (type: Long or PmDVOperator) specifies the relational operator used by the input validation

check:

pmDVBetween = 0 ' is between
pmDVNotBetween =1 ' is not between
pmDVEqual = 2 ' is equal to
pmDVNotEqual = 3 ' is not equal to
pmDVGreater = 4 ' is greater than

BasicMaker and PlanMaker

pmDVLess 5 ' is less than
pmDVGreaterEqual = 6 ' is greater than or equal to
pmDVLessEqual = 7 ' is less than or equal to

Formulal (optional; type: String) defines a string containing a number, a reference to a cell, or a
formula. For pmDVBetween and pmDVNotBetween it specifies the minimum, for all other operators
the value.

Formula2 (optional; type: String) defines a string containing a number, a reference to a cell, or a
formula. Must be specified only if pmDVBetween or pmDVNotBetween are used.

Return type:

none

Delete (method)

Removes the input validation check from a range.
Syntax:
Delete
Parameters:
none
Return type:
none

Example:

' Remove the input validation check from cells Al and A2
pm.Application.ActiveSheet.Range ("Al:A2") .Validation.Delete

AutoFilter (object)

Access paths:

= Application 2 Workbooks = Item = Sheets = Item = AutoFilter
= Application 2 Workbooks = ActiveSheet - AutoFilter

= Application = ActiveWorkbook = ActiveSheet > AutoFilter

= Application = ActiveSheet 2> AutoFilter

ﬂ Description

The AutoFilter object allows you to access the AutoFilter of a worksheet. In PlanMaker, such filters can be set
with the ribbon command Data | Filter group | AutoFilter.

BasicMaker and PlanMaker

ﬂ Access to the object

Each worksheet (Sheet) has exactly one AutoFilter object. It can be accessed through Sheet.AutoFilter:

' Display the number of columns in the AutoFilter
MsgBox pm.ActiveSheet.AutoFilter.Filters.Count

ﬂ Properties, objects, collections and methods

Objects:
= Application — Application
= Parent — Sheet

Collections:
= Filters — Filters

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. an object of the type Sheet.

Filters (pointer to collection)
Data type: Object

Returns the Filters collection that allows you to access the individual columns in an AutoFilter.

Filters (collection)

Access paths:

= Application 2 Workbooks = Item = Sheets = Item = AutoFilter = Filters
= Application 2 Workbooks = ActiveSheet = AutoFilter = Filters

= Application = ActiveWorkbook = ActiveSheet = AutoFilter = Filters

= Application = ActiveSheet = AutoFilter = Filters

BasicMaker and PlanMaker

n Description
The Filters collection contains all columns of the currently active AutoFilter.

The individual elements of this collection are of the type Filter. You can use the individual Filter objectsto
query the selection criteria and operators of individual columns of the AutoFilter.

ﬂ Access to the collection

Each AutoFilter has exactly one Filters collection. It is accessed through AutoFilter.Filters:

' Display the number of columns in the AutoFilter
MsgBox pm.ActiveSheet.AutoFilter.Filters.Count

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Filter (default object)
= Application — Application

= Parent — AutoFilter

Count (property, R/0)
Data type: Long

Returns the number of Filter objects in the collection, i.e. the number of columns contained in the active
AutoFilter.

Item (pointer to object)

Data type: Object
Returns an individual Filter object, i.e. one individual column in the AutoFilter.

Which column you get depends on the numeric value that you pass to Item: 1 for the first column, 2 for the
second, etc.

Application (pointer to object)
Data type: Object
Returns the Application object.

BasicMaker and PlanMaker

Parent (pointer to object)
Data type: Object

Returns the parent object, i.e. an object of the type AutoFilter.

Filter (object)

Access paths:

= Application 2 Workbooks = Item = Sheets = Item = AutoFilter = Filters = Item
= Application 2 Workbooks = ActiveSheet = AutoFilter = Filters = Item

= Application 2 ActiveWorkbook = ActiveSheet = AutoFilter = Filters = Item

= Application 2 ActiveSheet 2 AutoFilter = Filters = Item

n Description

A Filter object represents one individual column in the active AutoFilter. You can use it to retrieve the criteria
and filter conditions for the respective column.

E Access to the object

The individual Filter objects can be accessed solely through enumerating the elements of the corresponding
Filters collection.

For each AutoFilter there is exactly one instance of the Filter collection and it is called AutoFilter.Filters:

' Display the criterion for the first column of the AutoFilter
MsgBox pm.ActiveSheet.AutoFilter.Filters.Item(l).Criterial

Please note that all properties of the Filter object are read-only. To set up a new AutoFilter, use the AutoFilter
method in the Range object.

B Properties, objects, collections and methods

Properties:

= Operator R/O
= Criterial R/O
= Criteria2 R/O

Objects:

= Application — Application
= Parent — Filters

BasicMaker and PlanMaker

Operator (property, R/0)
Data type: Long (PmAutoFilterOperator)

Returns the type of the filter condition. The possible values are:

pmAll = 0 ' Show all rows (= do not filter)

pmAnd = 1 ' Criterial and Criteria2 must be met.
pmBottomlOItems = 2 ' Only the n cells with the lowest values*
pmBottomlOPercent = 3 ' Only the bottom n percent values*

pmOr = 4 ' Criterial or Criteria2 must be met.
pmToplOItems = 5 ' Only the n highest values*
pmToplOPercent = 6 ' Only the top n percent values*

pmBlank = 7 ' Show only blank rows

pmNonblank = 8 ' Show only non-blank rows

pmCustom = 9 ' User-defined filter

* In these cases, Criterial contains the value for "n".

Criterial (property, R/0)
Data type: String
Returns the criterion of the filter — for example "red" if you have filtered for the value "red".

Exception: If one of the operators pmTop10Items, pmTop10Percent, pmBottom10Items or
pmBottom10Percent is used, then Criterial contains a numeric value indicating fow many values to display.

Criteria2 (property, R/0)
Data type: String

Returns the second criterion of the filter — provided that Operator is set to pmAnd or pmOr, as two filter
criteria are only possible with them.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object

Returns the superordinate object, i.e. Filters.

BasicMaker and PlanMaker

Windows (collection)

Access path: Application = Windows

ﬂ Description

The Windows collection contains all open document windows. The individual elements of this collection are of
the type Window.

ﬂ Access to the collection

There is exactly one instance of the Windows collection during the whole runtime of PlanMaker. It is accessed
through Application.Windows:

' Show the number of open document windows
MsgBox pm.Application.Windows.Count

' Show the name of the first open document window
MsgBox pm.Application.Windows (1) .Name

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Jtem — Window (default object)
= Application — Application

= Parent — Application

Count (property, R/0)
Data type: Long

Returns the number of Window objects in PlanMaker — in other words: the number of open document
windows.

Item (pointer to object)
Data type: Object
Returns an individual Window object, i.e. an individual document window.

Which Window object you get depends on the parameter that you pass to Item. You can specify either the
numeric index or the name of the desired document window. Examples:

BasicMaker and PlanMaker

' Show the name of the first document window
MsgBox pm.Application.Windows.Item(1l) .FullName

' Show the name of the document window "Test.tmdx" (if currently open)
MsgBox pm.Application.Windows.Item("Test.pmdx") .FullName

' You can also use the full name with path
MsgBox pm.Application.Windows.Item("c:\Documents\Test.pmdx") .FullName

Application (pointer to object)
Returns the Application object.

Parent (pointer to object)

Returns the parent object, i.e. Application.

Window (object)

Access paths:

= Application 2 Windows = Item

= Application > ActiveWindow

= Application 2 Workbooks = Item 2 ActiveWindow
= Application 2 ActiveWorkbook = ActiveWindow

n Description
A Window object represents one individual document window that is currently open in PlanMaker.

An individual Window object exists for each document window. If you open or close document windows, the
respective Window objects will be created or deleted dynamically.

ﬂ Access to the object
The individual Window objects can be accessed in any of the following ways:

= All open document windows are managed in the Application.Windows collection (type: Windows):

' Show the names of all open document windows
For i = 1 To pm.Application.Windows.Count

MsgBox pm.Application.Windows.Item (i) .Name
Next i

= You can access the currently active document window through Application.ActiveWindow:

' Show the name of the active document window
MsgBox pm.Application.ActiveWindow.Name

BasicMaker and PlanMaker

= The object Workbook contains an object pointer to the respective document window:

' Access the active document window through the active document
MsgBox pm.Application.ActiveWorkbook.ActiveWindow.Name

ﬂ Properties, objects, collections and methods

= FullName R/O

= Name R/O

= Path R/O

= Left

= Top

* Width

= Height

= WindowState

= DisplayFormulas

= DisplayVerticalScrollBar
= DisplayHorizontalScrollBar
= DisplayWorkbookTabs

= DisplayHeadings

= Zoom

= DisplayGridlines

= GridlineColor

= GridlineColorIndex

Objects:

* Workbook — Workbook

= ActiveCell > Range

= ActiveSheet — Sheet

= Application — Application
= Parent > Windows

Methods:
= Activate
= Close

FullName (property, R/0)

Data type: String

Returns the path and file name of the document opened in the window (e.g., "c:\Documents\Smith.pmdx").

Name (property, R/0)
Data type: String

Returns the file name of the document opened in the window (e.g., "Smith.pmdx").

BasicMaker and PlanMaker

Path (property, R/0)
Data type: String

Returns the path of the document opened in the window (e.g., "c:\Documents").

Left (property)

Data type: Long

Gets or sets the horizontal position of the window, measured in screen pixels.

Top (property)
Data type: Long

Gets or sets the vertical position of the window, measured in screen pixels.

Width (property)
Data type: Long

Gets or sets the width of the window, measured in screen pixels.

Height (property)
Data type: Long

Gets or sets the height of the window, measured in screen pixels.

WindowState (property)
Data type: Long (SmoWindowState)

Gets or sets the state of the document window. The possible values are:

smoWindowStateNormal =1 ' normal
smoWindowStateMinimize = 2 ' minimized
smoWindowStateMaximize = 3 ' maximized

DisplayFormulas (property)

Data type: Boolean

Gets or sets the setting whether table cells containing calculations should display the result or the formula of the
calculation.

BasicMaker and PlanMaker

DisplayVerticalScrollBar (property)

Data type: Boolean

Gets or sets the setting whether a vertical scroll bar should be shown on the righthand side of the document
window. Corresponds to the setting "Vertical scrollbar" on the Options tab in the dialog box of the ribbon
command File | Properties.

DisplayHorizontalScrollBar (property)

Data type: Boolean

Gets or sets the setting whether a horizontal scroll bar should be shown at the bottom of the document window.
Corresponds to the setting "Horizontal scrollbar” on the Options tab in the dialog box of the ribbon command
File | Properties.

DisplayWorkbookTabs (property)

Data type: Boolean

Gets or sets the setting whether worksheet tabs should be displayed at the bottom of the document window.
Corresponds to the setting "Sheet tabs" on the Options tab in the dialog box of the ribbon command File |

Properties.

DisplayHeadings (property)
Data type: Boolean

Gets or sets the setting whether row and column headers should be displayed in the document window.
Corresponds to the ribbon command View | Row and column headers.

Notes:

= This property is supported by PlanMaker only for Excel compatibility reasons. It is recommended to use the
DisplayRowHeadings and DisplayColumnHeadings properties in the Sheet object instead, because these
settings can be made independently for each worksheet and allow you to enable/disable row and column
headers individually

= Ifyou retrieve this property while multiple worksheets exist where this setting has different values, the value
smoUndefined will be returned.

Zoom (property)
Data type: Long

Gets or sets the zoom level of the document window. Allowed are values between 50 and 400. They represent
the zoom level in percent.

Alternatively, you can use the constant pmZoomFitToSelection which adapts the zoom level to the current
selection.

BasicMaker and PlanMaker

Example:
' Set the zoom level to 120%
pm.ActiveWindow.Zoom = 120

Note: Changes to this setting affect only the current worksheet. If you want to change the zoom level of other
worksheets as well, you have to make them the active worksheet first.

DisplayGridlines (property)

Data type: Boolean

Gets or sets the setting whether grid lines should be displayed in the document window. Corresponds to the
"Gridlines" setting in the Insert | Tables group | Sheet | Properties dialog box of the ribbon command - except
that the gridlines of a/l worksheets in the document are affected.

Notes:

= This property is supported by PlanMaker only for Excel compatibility reasons. It is recommended to use the
identically named property in the Sheet object instead, as it allows you to change this setting for each

worksheet individually.

= Ifyou retrieve this property while multiple worksheets exist where this setting has different values, the value
smoUndefined will be returned.

GridlineColor (property)

Data type: Long (SmoColor)

Gets or sets the color of the grid lines as a "BGR" value (Blue-Green-Red triplet). You can either indicate an
arbitrary value or use one of the pre-defined BGR color constants.

Notes:

= This property is supported by PlanMaker only for Excel compatibility reasons. It is recommended to use the
identically named property in the Sheet object instead, as it allows you to change this setting for each

worksheet individually.

= Ifyou retrieve this property while multiple worksheets exist where this setting has different values, the value
smoUndefined will be returned.

GridlineColorindex (property)
Data type: Long (SmoColorIndex)

Gets or sets the color of the grid lines as an index color. "Index colors" are the standard colors of PlanMaker,
consecutively numbered from -1 for transparent to 15 for light gray. You may use the values shown in the Index

colors table.

Notes:

BasicMaker and PlanMaker

= This property is supported by PlanMaker only for Excel compatibility reasons. It is recommended to use the
identically named property in the Sheet object instead, as it allows you to change this setting for each
worksheet individually.

= If you retrieve this property while multiple worksheets exist where this setting has different values, the value
smoUndefined will be returned.

Workbook (pointer to object)

Data type: Object

Returns the Workbook object assigned to this document window. With this you can read and set numerous
settings of your document.

ActiveCell (pointer to object)

Data type: Object

Returns a Range object that represents the active cell in this document window. You can use this object to read
and edit the formatting and content of the cell.

Please note that ActiveCell always returns just one single cell, even if a range of cells is selected in the
worksheet. After all, selected ranges have exactly one active cell as well. You can see that when you select cells
and then press the Enter key: a cell frame appears within to selection to indicate the active cell.

ActiveSheet (pointer to object)

Data type: Object

Returns a Sheet object that represents the worksheet active in this document window. With this object you can
read and edit the settings of the worksheet.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the superordinate object, i.c. Windows.

Activate (method)

Brings the document window to the foreground (if the property Visible for this document is True) and sets the
focus to it.

BasicMaker and PlanMaker

Syntax:
Activate
Parameters:
none
Return type:
none

Example:

' Activate the first document window
pm.Windows (1) .Activate

Close (method)
Closes the document window.
Syntax:

Close [SaveChanges]
Parameters:

SaveChanges (optional; type: Long or SmoSaveOptions) indicates whether the document opened in the
window should be saved or not (if it was changed since last save). If you omit this parameter, the user
will be asked to indicate it (if necessary). The possible values for SaveChanges are:

smoDoNotSaveChanges = 0 ' Don't ask, don't save
smoPromptToSaveChanges = 1 ' Ask the user
smoSaveChanges = 2 ' Save without asking
Return type:
none
Example:

' Close the active document window, without saving
pm.ActiveWindow.Close smoDoNotSaveChanges

RecentFiles (collection)

Access path: Application > RecentFiles

n Description

RecentFiles is a collection of all recently opened files listed in the File menu. The individual elements of this
collection are of the type RecentFile.

BasicMaker and PlanMaker

ﬂ Access to the collection

There is exactly one instance of the RecentFiles collection during the whole runtime of PlanMaker. It is
accessed directly through Application.RecentFiles:

' Show the name of the first recent file in the File menu
MsgBox pm.Application.RecentFiles.Item (1) .Name

' Open the first recent file in the File menu
pm.Application.RecentFiles.Item(1l) .Open

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O
= Maximum

Objects:

= Item — RecentFile (default object)
= Application — Application

= Parent — Application

Methods:
= Add

Count (property, R/0)
Data type: Long

Returns the number of RecentFile objects in PlanMaker — in other words: the number of the recently opened
files listed in the File menu.

Maximum (property, R/0)
Data type: Long

Gets or sets the setting "Recently used files in File menu", which determines how many recently opened files
can be displayed in the File menu.

The value may be between 0 and 9.

Item (pointer to object)
Data type: Object
Returns an individual RecentFile object, i.e. one individual file entry in the File menu.

Which RecentFile object you get depends on the numeric value that you pass to Item: 1 for the first of the
recently opened files, 2 for the second, etc.

BasicMaker and PlanMaker

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object
Returns the parent object, i.c. Application.

Add (method)
Adds a document to the list of recently opened files.
Syntax:
Add Document, [FileFormat]
Parameters:
Document is a string containing the file path and name of the document to be added.

FileFormat (optional; type: Long or PmSaveFormat) specifies the file format of the document to be
added. The possible values are:

pmFormatDocument = 0 ' PlanMaker document

pmFormatTemplate = 1 ' PlanMaker document template
pmFormatExcel97 = 2 ' Excel 97/2000/XP

pmFormatExcel5 = 3 ' Excel 5.0/7.0

pmFormatExcelTemplate = 4 ' Excel document template

pmFormatSYLK = 5 ' Sylk

pmFormatRTF = 6 ' Rich Text Format

pmFormatTextMaker = 7 ' TextMaker (= RTF)

pmFormatHTML = 8 ' HTML document

pmFormatdBaseDOS = 9 ' dBASE database with DOS character set
pmFormatdBaseAnsi = 10 ' dBASE database with Windows character set
pmFormatDIF = 11 ' Text file with Windows character set
pmFormatPlainTextAnsi = 12 ' Text file with Windows character set
pmFormatPlainTextDOS = 13 ' Text file with DOS character set

pmFormatPlainTextUnix 14 ' Text file with ANSI character set for UNIX,
Linux, FreeBSD
pmFormatPlainTextUnicode = 15 ' Text file with Unicode character set
pmFormatdBaseUnicode = 18 ' dBASE database with Unicode character set
pmFormatPlainTextUTF8 21 ' Text file with UTF8 character set
pmFormatMSXML 23 ' Excel 2007 and later
pmFormatMSXMLTemplate = 24 ' Excel document template 2007 and later
pmFormatPM2008 26 ' PlanMaker 2008 document
pmFormatPM2010 27 ' PlanMaker 2010 document
pmFormatPM2012 = 28 ' PlanMaker 2012 document
pmFormatPM2012Template 29 ' PlanMaker 2012 document template

If you omit this parameter, the value pmFormatDocument will be assumed.

BasicMaker and PlanMaker

Tip: Independent of the value for the FileFormat parameter PlanMaker always tries to determine the file
format by itself and ignores evidently false inputs.

Return type:

Object (a RecentFile object which represents the added document)

Example:

' Add the file Test.pmdx to the File menu
pm.Application.RecentFiles.Add "Test.pmdx"
' Do the same, but evaluate the return value (mind the parentheses!)
Dim fileObj as Object

Set fileObj = pm.Application.RecentFiles.Add("Test.pmdx")

MsgBox fileOb7j.Name

RecentFile (object)

Access path: Application > RecentFiles > Item

n Description

A RecentFile object represents one individual of the recently opened files. You can use it to retrieve the
properties of such a file and to open it again.

An individual RecentFile object exists for each recently opened file. For each document that you open or close,
the list of these files in the File menu will change accordingly — i.e., the respective RecentFile objects will be
created or deleted dynamically.

ﬂ Access to the object

The individual RecentFile objects can be accessed solely through enumerating the elements of the collection
RecentFiles. You can access it through Applications.RecentFiles.

A}

Show the name of the first file in the File menu
MsgBox pm.Application.RecentFiles.Item(1l) .Name

ﬂ Properties, objects, collections and methods

Properties:

* FullName R/O

= Name (default property) R/O
= Path R/O

Objects:
= Application — Application

BasicMaker and PlanMaker

= Parent — RecentFiles

Methods:
= Open

FullName (property, R/0)

Data type: String

Returns the path and name of the document in the File menu (e.g. "c:\Documents\Smith.pmdx").

Name (property, R/0)
Data type: String

Returns the name of the document (e.g. ""Smith.pmdx").

Path (property, R/0)
Data type: String

Returns the path of the document (e.g. "c:\Documents").

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.e. RecentFiles.

Open (method)
Opens the appropriate document and returns the Workbook object for it.
Syntax:
Open
Parameters:
none
Return type:
Workbook

BasicMaker and PlanMaker

Example:

' Open the first recent file displayed in the File menu
pm.Application.RecentFiles (1) .Open

FontNames (collection)

Access path: Application - FontNames

ﬂ Description

FontNames is a collection of all fonts installed in Windows. The individual elements of this collection are of
the type FontName.

ﬂ Access to the collection

There is exactly one instance of the FontNames collection during the whole runtime of PlanMaker. It is
accessed through Application.FontNames:

' Display the name of the first installed font
MsgBox pm.Application.FontNames.Item(1l) .Name

' The same, but shorter, omitting the default properties:
MsgBox pm.FontNames (1)

ﬂ Properties, objects, collections and methods

Properties:
= Count R/O

Objects:

= Item — FontName (default object)
= Application — Application

= Parent — Application

Count (property, R/0)
Data type: Long

Returns the number of FontName objects in PlanMaker — in other words: the number of fonts installed in
Windows.

BasicMaker and PlanMaker

Item (pointer to object)
Data type: Object
Returns an individual FontName object, i.e. an individual installed font.

Which FontName object you get depends on the numeric value that you pass to Item: 1 for the first installed
font, 2 for the second, etc.

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)
Data type: Object
Returns the parent object, i.c. Application.

FontName (object)

Access path: Application = FontNames = Item

ﬂ Description

A FontName object represents one individual font of the fonts installed in Windows. An individual FontName
object exists for each installed font.

ﬂ Access to the object

The individual FontName objects can be accessed solely through enumerating the elements of the collection
FontNames. You can access it through Applications.FontNames.

' Display the name of the first installed font
MsgBox pm.Application.FontNames.Item(1l) .Name

' The same, but shorter, omitting the default properties:
MsgBox pm.FontNames (1)

ﬂ Properties, objects, collections and methods

Properties:

BasicMaker and PlanMaker

= Name (default property) R/O
= Charset R/O

Objects:

= Application — Application
= Parent — FontNames

Name (property, R/0)

Data type: String

Returns the name of the respective font.

Charset (property, R/0)
Data type: Long (SmoCharset)

Returns the character set of the respective font. The possible values are:

0 ' normal character set
2 ' symbol font

smoAnsiCharset
smoSymbolCharset

Application (pointer to object)
Data type: Object
Returns the Application object.

Parent (pointer to object)

Data type: Object

Returns the parent object, i.c. FontNames.

Statements and functions fromAto Z

Statements and functions from A to Z

In this chapter you will find descriptions of all statements and functions available in SoftMaker Basic:

Flow control

Do Loop, End, Exit, For Next, Gosub, Goto, If Then Else, Return, Select Case, Stop, While Wend

Conversion

Asc, CDbl, Chr, CInt, CLng, CSng, CStr, Fix, Format, Hex, Int, Oct, Str, Val

Date and Time

Date, DateSerial, DateValue, Day, Hour, Minute, Month, Now, Second, Time, TimeSerial, TimeValue,
Weekday, Year

Dialogs
Dialog, Dialog function, DlgEnable, DlgText, DlgVisible

File operations

ChDir, ChDrive, Close, CurDir, EOF, FileCopy, FileLen, FreeFile, Input, Kill, Line Input #, MkDir, Open,
Print #, RmDir, Seek, Write #

Arithmetic

Abs, Atn, Cos, Exp, Log, Rnd, Sgn, Sin, Sqr, Tan

Procedures

Call, Declare, Exit, Function End Function, Sub End Sub

String handling
Asc, Chr, InStr, LCase, Left, Len, LTrim, Mid, Right, RTrim, Space, Str, StrComp, String, Trim

Variables and constants

Const, Dim, IsDate, IsEmpty, IsNull, IsNumeric, Option Explicit, VarType

Arrays

Dim, Erase, LBound, Option Base, Option Explicit, Static, UBound

Applications and OLE

AppActivate, AppPlanMaker, AppSoftMakerPresentations, AppTextMaker, CreateObject, GetObject,
SendKeys, Shell

Miscellaneous

#include, Beep, Rem

Statements and functions fromAto Z

#include (statement)

#include " [Path\]FileName"

Embeds a file with Basic statements into the current script — as if the file's content was inserted at the place
where the #include statement resides.

For example, you can create a file that contains the definitions of some constants or dialogs that you want to
reuse in multiple scripts.

Note: You can omit the file path if the file to embed resides in the same folder.
Examples:
#include "code snippet.bas"

#include "c:\scripts\code snippet.bas"

Abs (function)

Abs (Num)
Returns the absolute value of the numeric value Num, i.e., removes its sign. If Num is zero, Abs returns zero.

The type of the return value corresponds to the type of the passed parameter Num. Exception: If Num is a
Variant of VarType 8 (String) and can be converted to a number, the result will have the type Variant of
VarType 5 (Double).

See also: Sgn

Example:
Sub Main

Dim Msg, x, Vy

x = InputBox ("Enter a number:")

y = Abs (x)

Msg = "The absolute value of " & x & " is: " & y
MsgBox Msg

End Sub

Statements and functions fromAto Z

AppActivate (statement)

AppActivate "Title"

Activates an already running application, i.e., brings the application window to the front and sets the focus to
the application.

The string Title is the application name as it appears in the title bar.

See also: AppPlanMaker, AppTextMaker, CreateObject, GetObject, Shell

Example:
Sub Main
X = Shell ("Calc.exe", 1) ' Invoke the Calculator application
For 1 = 1 To 5
SendKeys 1 & "{+}", True ' Send keystrokes
Next i
Msg = "The calculator will be closed now."
MsgBox Msg
AppActivate "Calculator" ' Set the focus to the calculator
SendKeys "${F4}", True ' Send Alt+F4 to close the application
End Sub

AppPlanMaker (function)

AppPlanMaker ["Command-line parameters"]
Starts the spreadsheet program PlanMaker.

The return value is a task ID that identifies the program. Values below 32 indicate that launching the program
failed.

You can pass the name of the file to be opened as a command-line parameter — for example:

AppPlanMaker "c:\Data\Tablel.pmdx"

To ensure that this command does not fail, PlanMaker must be registered in the Windows Registry. If this is not
the case, it is sufficient just to start PlanMaker once conventionally. The program will then automatically
update its settings in the Registry.

Note: This command simply starts the PlanMaker application without establishing an OLE Automation
connection. In order to make an OLE Automation connection to PlanMaker, use the GetObject function
after invoking AppPlanMaker. Alternatively, you can use the CreateObject function instead of the
AppPlanMaker function from the outset. In this case, PlanMaker will be launched and an OLE Automation
connection will be established at the same time.

Statements and functions fromAto Z

See also: AppSoftMakerPresentations, AppTextMaker, CreateObject, GetObject, Shell

AppSoftMakerPresentations (function)

AppSoftMakerPresentations ["Command-line parameters"]
Starts the presentation-graphics program Presentations.

The return value is a task ID that identifies the program. Values below 32 indicate that launching the program
failed.

You can pass the name of the file to be opened as a command-line parameter — for example:
AppSoftMakerPresentations "c:\Data\Presentationl.prdx"

To ensure that this command does not fail, Presentations must be registered in the Windows Registry. If this is
not the case, it is sufficient just to start Presentations once conventionally. The program will then automatically
update its settings in the Registry.

See also: AppTextMaker, CreateObject, GetObject, Shell

AppTextMaker (function)

AppTextMaker ["Command-line parameters"]
Starts the word processor TextMaker.

The return value is a task ID that identifies the program. Values below 32 indicate that launching the program
failed.

You can pass the name of the file to be opened as a command-line parameter — for example:

AppTextMaker "c:\Documents\Letter.tmdx"

To ensure that this command does not fail, TextMaker must be registered in the Windows Registry. If this is not
the case, it is sufficient just to start TextMaker once conventionally. The program will then automatically
update its settings in the Registry.

Note: This command simply starts the TextMaker application without establishing an OLE Automation
connection. In order to make an OLE Automation connection to TextMaker, use the function GetObject
after invoking AppTextMaker. Alternatively, you can use the CreateObject function instead of the
AppTextMaker function from the outset. In this case, TextMaker will be launched and an OLE Automation
connection will be established at the same time.

See also: AppPlanMaker, AppSoftMakerPresentations, CreateObject, GetObject, Shell

Statements and functions fromAto Z

Asc (function)

Asc (Str)

Returns the character code of the first letter in a string according to the Unicode character table (UCS-2).
The result is an integer value between 0 and 32767.

See also: Chr

Example:
Sub Main

Dim i, Msg

For 1 = Asc("A") To Asc("Z")
Msg = Msg & Chr (i)

Next i

MsgBox Msg

End Sub

Atn (function)

Atn (Num)

Returns the arctangent of a number.
The result is expressed in radians.
See also: Cos, Sin, Tan

Example:

Sub AtnExample

Dim Msg, Pi ' Declare variables

Pi = 4 * Atn (1) ' Calculate Pi

Msg = "Pi = " & Str(Pi)

MsgBox Msg ' Result: "Pi = 3.1415..."

End Sub

Statements and functions fromAto Z

Beep (statement)

Beep
Emits a short tone.
Specify the number of tones and the pause between the tones in milliseconds (e.g. 1000 for 1 second).

Example:

Declare Function Pause Lib "kernel32" ALIAS "WaitForSingleObject" (_
ByVal hHandle As Long, _
ByVal dwMilliseconds As Long) As Long

Sub Beep3x

Dim i As Integer
For i = 1 to 3
Beep
Pause -1, 1000
Next i

End Sub

Begin Dialog ... End Dialog (statement)

Begin Dialog DialogName [X, Y,] Width, Height, Title$ [,.DialogFunction]
Dialog definition...
End Dialog

Is used to define a custom dialog box. See the section Dialog definition.

General information about creating custom dialog boxes can be found in the section Dialog boxes.

Call (statement)

Call Name [(Parameters)]

Or:

Name [Parameters]
Executes the Sub or Function procedure or DLL function with the name Name.

Parameters is a comma-separated list of parameters which can be passed to the procedure.

Statements and functions fromAto Z

The keyword Call is usually omitted. If it is used, the parameter list must be enclosed in parentheses, otherwise
parentheses may not be used.

Call Name(Parameterl, Parameter? ...) has therefore the same meaning as Name Parameterl, Parameter?2 ...
Functions can also be invoked using the Call statement; however their return value will be lost.

See also: Declare, Function, Sub

Example:

Sub Main
Call Beep
End Sub

CDbl (function)

CDbl (Expression)
Converts an expression to the Double data type. The parameter Expression must be a number or a string.

See also: ClInt, CLng, CSng, CStr

Example:

Sub Main
Dim y As Integer
y = 25

If VarType(y) = 2 Then
Print y
x = CDbl (y)
Print x

End If

End Sub

ChDir (statement)

ChDir [Drive:]Folder

Changes to a different current drive/folder.

Drive is an optional parameter (the default value is the current drive).
Folder is the name of the folder on the given drive.

The full path may not have more than 255 characters.

See also: CurDir, ChDrive, MKkDir, RmDir

Statements and functions fromAto Z

Example:

Sub Main
Dim Answer, Msg, NL
NL = Chr(10) ' Chr(10)=New line
CurPath = CurDir () ' Determine current path
ChDir "\"
Msg = "The folder was changed to " & CurDir() & "."
Msg = Msg & NL & NL & "Click on OK "

Msg = Msg & "to return to the previous folder."

Answer = MsgBox (Msg)

ChDir CurPath ' Back to the old folder
Msg = "We are now back to the folder " & CurPath & "."
MsgBox Msg

End Sub

ChDrive (statement)

ChDrive Drive

Changes the current drive.

Drive is a text string specifying the drive letter.

If Drive contains more than one character, only the first character will be used.

See also: ChDir, CurDir, MkDir, RmDir

Example:

Sub Main
Dim Answer, Msg, NL
NL = Chr(10) ' Chr(10)=New line
CurPath = CurDir () ' Determine current path
ChDrive "D"
Msg = "The folder was changed to " & CurDir() & ". "

Msg = Msg & NL & NL & "Click on OK "

Msg = Msg & "to return to the previous folder."

Answer = MsgBox (Msq)

ChDir CurPath ' Back to the previous folder
Msg = "We are now back to the folder " & CurPath & "."
MsgBox Msg

End Sub

Statements and functions fromAto Z

Chr (function)

Chr (Num)
Returns the character associated with the specified character code from the Unicode character table (UCS-2).
The parameter Num can take an integer value between 0 and 32767.
See also: Asc
Example:
Sub Main

Dim i, Msg

For 1 = Asc("A") To Asc("Z")

Msg = Msg & Chr (i)
Next i
MsgBox Msg

End Sub

Cint (function)

CInt (Expression)

Converts an expression to the Integer data type.

The parameter Expression must be a number or a string consisting of a number.
The valid range of values:

-32768 <= Expression <= 32768

See also: CDbl, CLng, CSng, CStr

Example:

Sub Main
Dim y As Long
y = 25
x = CInt(y)
Print x

End Sub

Statements and functions fromAto Z

CLng (function)

CLng (Expression)

Converts an expression to the Long data type.

The parameter Expression must be a number or a string consisting of a number.
The valid range of values:

-2147483648 <= Expression <= 2147483648

See also: CDbl, CInt, CSng, CStr

Example:

Sub Main
Dim y As Integer
y = 25

If VarType(y) = 2 Then
Print y
x = CLng (y)
Print x

End If

End Sub

Close (statement)

Close [[#]FileNumber]
Closes a specific open file or all open files.

FileNumber is the number assigned to the file by the Open statement. If you omit it, all currently open files will
be closed.

See also: Open

Example:
Sub Make3Files

Dim i, FNum, Fname

For i = 1 To 3
FNum = FreeFile ' Retrieve a free file index
FName = "TEST" & FNum
Open FName For Output As Fnum ' Open file
Print #i, "This is test #" & 1 ' Write to file
Print #i, "One more line"

Statements and functions fromAto Z

Next i

' Close all files
Close
End Sub

Const (statement)

Const Name = Expression
Defines a symbolic name for a constant.
Constants defined outside of procedures are always global.

A type suffix (e.g. % for Integer, see the section Data types) can be attached to the name, determining the data
type of the constant. Otherwise, the type is Long, Double or String, depending on the value.

See also: section Data types

Example:

Global Const GlobalConst = 142
Const MyConst = 122

Sub Main

Dim Answer, Msg
Const PI = 3.14159

Cos (function)

Cos (Num)
Returns the cosine of an angle.
The angle must be expressed in radians.
See also: Atn, Sin, Tan
Example:
Sub Main
pi = 4 * Atn (1)
rad = 180 * (pi/180)
x = Cos(rad)
Print x

End Sub

Statements and functions fromAto Z

CreateObject (function)

CreateObject (Class)

Creates an OLE Automation object and returns a reference to this object.
The function expects the following syntax for the Class parameter:
Application.Class

Application is the application name and Class is the object type. Class is the name under which the object is
listed the Windows Registry.

Example:
Set tm = CreateObject ("TextMaker.Application")

When you invoke this function and the respective application is not already running, it will launch
automatically.

As soon as the object has been created, its methods and properties can be accessed using dot notation — for
example:

tm.Visible = True ' makes TextMaker's application window visible

See also: GetObject, Set, section OLE Automation

CSng (function)

CSng (Expression)
Converts an expression to the Single data type.
See also: CDbl, CInt, CLng, CStr

Example:
Sub Main

Dim y As Integer
y = 25

If VarType(y) = 2 Then
Print y
x = CSng(y)
Print x

End If

End Sub

Statements and functions fromAto Z

CStr (function)

CStr (Expression)
Converts an expression to the String data type.

Unlike the Str function, the string returned by CStr does not have a leading space character if it contains a
positive number.

See also: CDbl, CInt, CL.ng, CSng, Str

CurDir (function)

CurDir (Drive)

Returns the current folder on the given drive.

Drive is a text string specifying the drive letter.

If Drive is not specified, the current drive will be used.

See also: ChDir, ChDrive, MkDir, RmDir

Example:

Sub Main
MsgBox "The current folder is: " & CurDir ()
End Sub

Date (function)

Date [()]

Returns the current system date in short date format.

The short date format can be changed using the Regional Settings applet in the Windows Control Panel.
The result is a Variant of VarType 8 (String).

See also: DateSerial, DateValue, Day, Month, Now, Time, TimeSerial, TimeValue, Weekday, Year

Example:

Sub Main
MsgBox "Today is " & Date & "."

Statements and functions fromAto Z

End Sub

DateSerial (function)

DateSerial (Year, Month, Day)
Returns a Variant variable (type: date) corresponding to the parameters Year, Month and Day.

See also: DateValue, Day, Month, Now, Time, TimeSerial, TimeValue, Weekday, Year

Example:

Sub Main
Print DateSerial (2020,09,25) ' returns 2020-09-25
End Sub

DateValue (function)

DateValue (DateExpression)

Returns a Variant variable (type: date) corresponding to the specified date expression. DateExpression can be a
string or any expression that represents a date, a time, or both a date and a time.

See also: DateSerial, Day, Month, Now, Time, TimeSerial, TimeValue, Weekday, Year

Example:

Sub Main
Print DateValue ("25. September 2020") ' returns 2020-09-25
End Sub

Day (function)

Day (Expression)
Returns the day of the month for the given date expressed as an integer value.
Expression is a numeric or string expression which represents a date.

See also: Date, Hour, Minute, Month, Now, Second, Time, Weekday, Year

Example:
Sub Main

Tl = Now ' Now = current date + time

Statements and functions fromAto Z

MsgBox T1

MsgBox "Day: " & Day(T1)

MsgBox "Month: " & Month(T1)

MsgBox "Year: " & Year (T1l)

MsgBox "Hours: " & Hour (T1)

MsgBox "Minutes: " & Minute (T1)

MsgBox "Seconds: " & Second(T1)
End Sub

Declare (statement)

Declare Sub Name Lib LibName$ [Alias AliasName$] [(Parameters)]
Or:
Declare Function Name Lib LibName$ [Alias AliasNameS] [(Parameters)] [As Type]

Declares a procedure or a function contained in a Dynamic Link Library (DLL).
Name is the name of the procedure or function.
LibName is the name of the DLL in which the procedure or function resides.

AliasName is the name under which the procedure or the function is exported from the DLL. If AliasName is
omitted, it will be the same as Name. An alias is required, for example, if the exported name is a reserved name
in SoftMaker Basic or contains characters which are not allowed in names.

Parameters is a comma-separated list of parameter declarations (see below).

Type specifies the data type (String, Integer, Double, Long, Variant). Alternatively, the type can be indicated
by appending a type suffix (e.g. % for Integer) to the function name (see the section Data types).

The Declare statement can be used only outside of Sub and Function declarations.

Declaring parameters

[ByVal | ByRef] Variable [As Type]

The keywords ByVal or ByRef (default value) are used to indicate whether the parameter is passed by value or
by reference (see the section Passing parameters via ByRef or ByVal).

Type specifies the data type (String, Integer, Double, Long, Variant). Alternatively, the type can be indicated
by appending a type suffix (e.g. % for Integer) to the variable name (see the section Data types).

See also: Call, section Calling functions in DLLs

Statements and functions fromAto Z

Dialog (function)

Dialog (DI1g)

Displays a custom dialog box.

Dlg is the name of a dialog variable that must have been declared previously with the Dim statement.
The return value is the index of the button that was pressed by the user:

-1 OK

0 Cancel

>0 User-defined command buttons (1 for the first, 2 for the second, etc.)

See also: DigEnable, DlgText, DIlgVisible, section Dialog boxes

Example:

' Shows different information, depending on
' which button was pressed.

Sub Main
Dim MyList$ (2)
MyList (0) = "Banana"
MyList (1) = "Orange"
MyList (2) = "Apple"

Begin Dialog DialogNamel 60, 60, 240, 184, "Test Dialog"
Text 10, 10, 28, 12, "Name:"
TextBox 40, 10,50, 12, .joe
ListBox 102, 10, 108, 16, MyList$(), .MyListl
ComboBox 42, 30, 108, 42, MyListS$(), .Combol
DropListBox 42, 76, 108, 36, MyList$(), .DropListl$
OptionGroup .grpl
OptionButton 42, 100, 48, 12, "Optioné&l"
OptionButton 42, 110, 48, 12, "Optioné&2"
OptionGroup .grp2
OptionButton 42, 136, 48, 12, "Option&3"
OptionButton 42, 146, 48, 12, "Optioné&4d"
GroupBox 132, 125, 70, 36, "Group"
CheckBox 142, 100, 48, 12, "Check&A", .Checkl
CheckBox 142, 110, 48, 12, "Check&B", .Check2
CheckBox 142, 136, 48, 12, "Check&C", .Check3
CheckBox 142, 146, 48, 12, "Check&D", .Check4
CancelButton 42, 168, 40, 12
OKButton 90, 168, 40, 12
PushButton 140, 168, 40, 12, "Buttonl"
PushButton 190, 168, 40, 12, "Button2"

End Dialog

Dim Dlgl As DialogNamel
Dlgl.joe = "Hare"
Dlgl.MyListl = 1
Dlgl.Combol = "Kiwi"

Dlgl.DropListl = 2
Dlgl.grp2 = 1

Statements and functions fromAto Z

' Dialog returns -1 for OK, 0 for Cancel, # for Buttonl/2
button = Dialog(Dlgl)

If button = 0 Then Return

MsgBox "Input box: "& Dlgl.joe

MsgBox "List box: " & Dlgl.MyListl

MsgBox Dlgl.Combol

MsgBox Dlgl.DropListl

MsgBox "Groupl: " & Dlgl.grpl

MsgBox "Group2: " & Dlgl.grp2

Begin Dialog DialogName2 60, 60, 160, 60, "Test Dialog 2"
Text 10, 10, 28, 12, "Name:"
TextBox 42, 10, 108, 12, .fred
OkButton 42, 44, 40, 12

End Dialog

If button = 2 Then
Dim Dlg2 As DialogNameZ2
Dialog D1lg2
MsgBox Dlg2.fred
ElseIf button = 1 Then
Dialog Dlgl
MsgBox Dlgl.Combol
End If

End Sub

Dim (statement)

Dim Name [(Subscripts)][As Typel [, ...]
Allocates memory for a variable and defines its type.
Name is the name of the variable.

Subscripts indicates the number and size of the dimensions, in case an array is created (see the section Arrays).
Use the following syntax:

[LowerLimit To] UpperLimit [, [LowerLimit To] UpperLimit | ...

For LowerLimit and UpperLimit, you should give integer values that determine the largest and smallest
allowed values for the array index, thereby specifying the array size. Only fixed values are allowed,
variables are not acceptable. If LowerLimit is omitted, it will take the value specified through the Option
Base command (0 or 1).

To declare dynamic arrays (see the ReDim statement), omit all limits:
Dim a()

Type specifies the data type (Integer, Long, Single, Double, String, String*n, Boolean, Variant, Object or a
user-defined type). Alternatively, the type can be indicated by appending a type suffix (e.g. % for Integer) to
the variable name (see the section Data types).

Dim Value As Integer

1s identical to:

Statements and functions fromAto Z

Dim Value%
If neither a data type nor a type suffix is given, a Variant variable will be created.

See also: Option Base, ReDim, section Variables

Example:
Sub Main
Dim a As Integer ' (alternatively: Dim a%)
Dim b As Long
Dim c As Single
Dim d As Double
Dim e As String
Dim f As Variant ' (alternatively: Dim f)
Dim g (10,10) As Integer ' Array of variables

DigEnable (statement)

DlgEnable "Name" [, State]

Enables or disables a dialog control in a custom dialog box. A disabled dialog control is shown in gray. It
cannot be changed by the user.

This statement can be invoked from inside dialog functions.
The string Name is the name of the dialog control in the dialog box.

If State = 0, the dialog control will be disabled; for all other values of State it will be enabled. If State is not
specified, the state of the dialog control will be toggled.

See also: DlgText, DlgVisible, section Dialog boxes

Example:

If ControlID$ = "Chkl" Then
DlgEnable "Group", 1
DlgVisible "Chk2"
DlgVisible "History"

End If

DigText (statement)

D1gText "Name", Text

Sets the text of a dialog control in a custom dialog box.

Statements and functions fromAto Z

This statement can be invoked from inside dialog functions.
The string Name is the name of the dialog control in the dialog box.

The string Text is the text to be set.

See also: DigEnable, DlgVisible, section Dialog boxes

Example:

If ControlID$ = "Chk2" Then
DlgText "tl1l", "Open"

End If

DigVisible (statement)

DlgVisible "Name", [Value]

Hides a dialog control in a custom dialog box or makes it visible again.
This statement can be invoked from inside dialog functions.

The string Name is the name of the dialog control in the dialog box.

If Value = 0, the dialog control will be hidden; for all other values of Value it will be displayed. If Value is not
specified, the dialog control will be hidden if it is currently visible, and vice versa.

See also: DigEnable, DlgText, section Dialog boxes
Example:

If ControlID$ = "Chkl" Then
DlgEnable "Group", 1
DlgVisible "Chk2"
DlgVisible "Open"

End If

Do ... Loop (statement)

Do [{While|Until} Condition]

[Statements]
[Exit Do]
[Statements]
Loop
Or:
Do
[Statements]
[Exit Do]

Statements and functions fromAto Z

[Statements]
Loop [{While|Until} Condition]

Executes a group of statements repeatedly as long as a condition is true (Do ... While) or until a condition
becomes true (Do ... Until). See also the section Flow control.

See also: While Wend, section Flow control

Example:
Sub Main
Dim Value, Msg
Do
Value = InputBox ("Enter a number between 5 and 10.")
If Value >= 5 And Value <= 10 Then
Exit Do ' Number is OK -> Exit
Else
Beep ' Number is not OK -> try once more
End If
Loop
End Sub

End (statement)

End [{Function|If|Sub}]
Stops executing a script or a block of statements.

See also: Exit, Function, If Then Else, Select Case, Stop, Sub

Example:

In this example, the End statement ends the program execution within the routine "Test".

Sub Main
Dim Varl as String
Varl = "Hello"
MsgBox "Test"
Test Varl
MsgBox Varl

End Sub

Sub Test (wvarl as String)
wvarl = "End"
MsgBox "Program terminated because of the End statement"
End

End Sub

Statements and functions fromAto Z

EOF (function)

EOF (FileNumber)

Returns True if the end of the file has been reached.

FileNumber is the number assigned to the respective file by the Open statement.
See also: Open

Example:

' Read 10 characters at a time from a file and display them.
' "Testfile" must already exist.

Sub Main
Open "TESTFILE" For Input As #1 ' Open file
Do While Not EOF (1) ' Repeat until end of file
MyStr = Input (10, #1) ' Read 10 characters
MsgBox MyStr
Loop
Close #1 ' Close file
End Sub

Erase (statement)

Erase ArrayName [, ...]
Re-initializes the elements of an array.
See also: Dim

Example:

Option Base 1

Sub Main
Dim a(10) As Double
Dim i As Integer
For i = 1 to 3

a(i) = 2 + 1i
Next i
Erase a
Print a(l), a(2), a(3) ' Returns 0 0 O
End Sub

Statements and functions fromAto Z

Exit (statement)

Exit {Do|For|Function|Sub}
Exits from a Do loop, a For loop, a function, or a procedure.

See also: End, Stop

Example:
Sub Main
Dim Value, Msg
Do
Value = InputBox ("Enter a number between 5 and 10.")
If Value >= 5 And Value <= 10 Then
Exit Do ' Number is OK -> Exit from the loop
Else
Beep ' Number is not OK -> try once more
End If
Loop
End Sub

Exp (function)

Exp (Number)

Calculates the exponential function (e ~ Number).

The value of the constant e (Euler's number) is approximately 2.71828.
See also: Log

Example:

' Exp(x)=e”"x, therefore Exp(l)=e

Sub ExpExample
Dim Msg, ValueOfE
ValueOfE = Exp (1)
Msg = "The value of e is " & ValueOfE
MsgBox Msg
End Sub

Statements and functions fromAto Z

FileCopy (statement)

FileCopy SourceFile, TargetFile
Copies the file SourceFile to TargetFile.

The parameters SourceFile and TargetFile must be strings with the desired file names. Wildcard characters
such as "*" or "?" are not allowed.

FileLen (function)

FileLen (FileName)
Returns the size of the specified file in bytes (as a Long Integer).

The parameter FileName must be a string with the desired file name. Wildcard characters such as "*" or "?" are
not allowed.

Fix (function)

Fix (Num)
Returns the integral part of a numerical expression.

The difference to the Int function is in the handling of negative numbers: while Int always returns the next
integer less than or equal to Num, the function Fix simply removes the part after the decimal separator (see
example).

See also: Int

Example:

Sub Main
Print Int(1.4) v-> 1
Print Fix(1.4) v-> 1
Print Int(-1.4) v-> =2
Print Fix(-1.4) > -1

End Sub

Statements and functions fromAto Z

For Each ... Next (statement)

For Each Element In Group
[Statements]
[Exit For]
[Statements]

Next [Element]

Executes a group of statements for all elements of a field or a collection.

Element is a variable of type Variant (for arrays) or Object (for collections) that successively takes on the
values of the individual elements from Group.

For Each ... Next cannot be used with arrays of user-defined types.

See also: For Next, Exit, section Arrays, section Using collections

Example:

Sub Main
Dim z (1 To 4) As Double
z(1) = 1.11
z(2) = 2.22
z(3) = 3.33
z(4) = 4.44
For Each v In z

Print v

Next v

End Sub

For ... Next (statement)

For Counter = InitialValue To FinalValue [Step StepSize]
[Statements]
[Exit For]
[Statements]

Next [Counter]

Executes a group of statements in a loop.

Counter is the counter variable that is increased by the value indicated in StepSize at each iteration.
InitialValue is the initial value for Counter.

FinalValue is the final value for Counter.

StepSize is the step value. If it is omitted, the step value is 1.

In the first iteration, Counter assumes the value of InitialValue. At each additional iteration, StepSize is added
to the value of Counter. The loop execution will end as soon as FinalValue is exceeded.

Statements and functions fromAto Z

See also: For Each Next, Exit, section Flow control

Example:

Sub Main
Dim x, vy, z
For x = 1 To 3
For vy = 1 To 3
For z = 1 To 3
Print z, vy, X
Next z
Next vy
Next x
End Sub

Format (function)

Format (Expression [, Format])

Returns a string consisting of the Expression parameter formatted according to the chosen formatting
instructions.

The desired format is specified using the string parameter Format. You can choose from several predefined
formats that are listed on the pages that follow. Additionally, more precise formatting can be achieved using
user-defined formats.

If the parameter Format is empty and Expression is a number, the Format function will return the same result
as the Str function, with the exception that Format does not prepend a space character to positive numbers.

For numeric formats, Expression must be a numeric expression; for string formats it must be a string.
For date/time formats, Expression must be a string with the same structure as returned by the Now function.

See also: Str, sections Numeric formats of the Format function, Date/time formats of the Format function and
String formats of the format Function

Example:

Sub Main
MsgBox Format (Date, "long date")
MsgBox Format (Date, "dd.mm.yy")
End Sub

Numeric formats of the Format function

The following table lists the predefined numeric formats for the Format function:

Format name Description

Statements and functions fromAto Z

General Number

Fixed

Standard

Percent

Scientific

True/False

Output the unformatted number.

Output with at least one digit to the left and exactly two digits to the right of the decimal
separator.

Output with at least one digit to the left and exactly two digits to the right of the decimal
separator; additionally, the thousands separator is used for numbers >= 1000.

Output with at least one digit to the left and exactly two digits to the right of the decimal
separator; additionally, the number is multiplied by 100 and a percent sign is appended.

Output with at least one digit to the left and exactly two digits to the right of the decimal
separator using scientific notation (exponential notation).

"False" if the number is zero, otherwise "True"
b

User-defined numeric formats

User-defined numeric formats can be composed of the following characters:

Character

Meaning

0

%

E- E+ e- e+

Placeholder for digits: Output a digit or zero.

If the number to be formatted has a digit in the position where Format has "0", this digit is
output, otherwise 0 is output. If the number to be formatted has fewer digits to the left and to the
right of the decimal separator than the number of "0" defined in the Format, leading or trailing
zeros are displayed. If the number to be formatted has more digits to the right of the decimal
separator than the number of "0" defined in Format, the number will be rounded to the
corresponding number of digits. If the number to be formatted has more digits to the left of the
decimal separator than the number of "0" defined in Format, the extra digits will always be
output.

Placeholder for digits: Output a digit or nothing.

If the number to be formatted has a digit in the position of "#" in Format, this digit is output,
otherwise nothing is displayed.

Decimal separator

Percent sign. Causes a percent sign (%) to be output; furthermore, the expression is multiplied by
100.

Thousands separator. If the number >= 1000, this sign is inserted between the thousands and the
hundreds.

Scientific format. If Format has at least one digit placeholder (0 or #) to the right of E-, E+, e-,
or e+, the number is formatted using a scientific format. This is achieved by inserting an E or e
between the mantissa and the exponent. The number of digit placeholders to its right defines the
number of digits in the exponent. In case of E+/e+, the exponent is always output with its sign, in
case of E-/e- notation the sign is only output if the exponent is negative.

Statements and functions fromAto Z

-+ $ () Space character

" Text"

Time separator. The actual character that is output is defined by the time format in Windows
Control Panel.

Date separator. The actual character that is output is defined by the date format in Windows'
Control Panel.

The specified character is output. To output any other character, it must be preceded by a
backslash \ or enclosed in quotation marks.

The character following the \ is output. The backslash itself is not displayed. To output a
backslash, duplicate it (\\).

Note: Quotation marks may not be used in format strings; even \" causes an error message.

The string enclosed in quotation marks is output. The quotation marks themselves are not
displayed.

Defines the character immediately following as a fill character. Spaces will then be filled using
this character.

User-defined numeric formats can have from one to four sections:

Sections Result

1 section This format applies to all values.

2 sections The format in the first section applies to positive values and zero, the one in the second section to
negative values.

3 sections The first format applies to positive values, the second one to negative values and the third one to
Zero.

4 sections The first format applies to positive values, the second one to negative values, the third one to

zero and the fourth one to Null values (see the IsNull function).

If one of these sections is left empty, the format for positive numbers will be used in its place.

The individual sections must be separated by semicolons.

Examples

The following table gives some examples. The left column shows the format expression, the remaining columns
show the results for the numbers 3, -3 and 0.3.

Format 3 -3 0.3
(empty) 3 -3 0.3
"o" 3 -3 0
"0.00" 3.00 -3.00 0.30
"#,H#H0" 3 -3 0

Statements and functions fromAto Z

"$# ##0;($#,##0)" $3 ($3) $0
"$#,##0.00;($#,##0.00)" $3.00 (53.00) $0.30
"0%" 300% -300% 30%
"0.00%" 300.00% -300.00% 30.00%
"0.00E+00" 3.00E+00 -3.00E+00 3.00E-01
"0.00E-00" 3.00E00 -3.00E00 3.00E-01

Date/time formats of the Format function

Date and time values are simply floating point numbers. The digits to the left of the decimal point define the
date, the digits to its right the time. If the number has no digits to the right of the decimal point, it consists of
only the date. Conversely, if it has no digits to the left of the decimal point, it consists of only the time.

Date and time values can be formatted using predefined or user-defined formatting codes.

The following table lists the predefined date/time formats for the Format function:

Format name Description

General Date Outputs the date and/or time without any formatting (i.e., typically in the short date format).
Short Date Outputs the date in the short date format.

Medium Date Outputs the date using month names abbreviated to three characters.

Long Date Outputs the date in the long date format.

Short Time Outputs the time in the short time format.

Medium Time Outputs the time in a 12-hour format (hh:mm AM|PM).

Long Time Outputs the time in the long time format.

User-defined date and time formats
User-defined formats can be composed of the following format codes.

Important: The format codes are case-sensitive.

Character Meaning
c Returns the complete date in the short date format and the complete time in hh:nn:ss format.
d Returns the day as a number (1-31).

Statements and functions fromAto Z

dd Returns the day as a two-digit number (01-31).

ddd Returns the weekday abbreviated to three letters (Sun-Sat).
dddd Returns the weekday (Sunday-Saturday).

ddddd Returns the full date in the short date format.

dddddd Returns the full date in the long date format.

w Returns the weekday as a number (1-7), 1=Sunday, 2=Monday, ... 7=Saturday.
m Returns the month as a number (1-12).

mm Returns the month as a two-digit number (01-12).

mmm Returns the month name abbreviated to three letters (Jan-Dec).
mmmm Returns the month name (January-December).

q Returns the quarter as a number (1-4).

Yy Returns the year as a two-digit number (00-99).

YYYY Returns the year as a three- to four-digit number (100-9999).
h Returns the hours as a number (0-23).

hh Returns the hours as a two-digit number (00-23).

n Returns the minutes as a number (0-59).

nn Returns the minutes as a two-digit number (00-59).

s Returns the seconds as a number (0-59).

ss Returns the seconds as a two-digit number (00-59).

AM/PM Use 12-hour format and display AM or PM

am/pm Use 12-hour format and display am or pm

A/P Use 12-hour format and display A or P

a/p Use 12-hour format and display a or p

Examples

Some examples are shown in the following table:

Statements and functions fromAto Z

Format Result for February 26, 2020 at 18:45:15
"m/d/yy" 2/26/20

"mmm d, yyyy" Feb 26, 2020

"hh:nn AM/PM" 06:45 PM

"hh:nn:ss" 18:45:15

String formats of the Format function

When formatting strings, user-defined formats of the Format function can be composed of the following codes:

Character Meaning

@ Outputs a character or a space character. The output is usually right-aligned (see, however, also the !
sign).

& Outputs a character or nothing.

< Output all characters in lowercase.

> Output all characters in uppercase.

! The exclamation point switches the output to left-aligned.

FreeFile (function)

FreeFile [()]

Returns the index of the next free file pointer. The result is an integer value between 1 and 255.
File indices are required when opening files (see the Open statement).

See also: Open

Example:

Sub Main
A = FreeFile
Open "TESTFILE" For Output As #A
Write #A, "Test"

Close #A
Kill "TESTFILE"
End Sub

Statements and functions fromAto Z

Function (statement)

Function Name [(ArgumentList)] [As Type]
[Statements]
Name = Expression
End Function
Begins the definition of a user-defined function.
Name is the name of the function.
ArgumentList is a comma-separated list of parameter declarations (see below).

Type specifies the data type (String, Integer, Double, Long, Variant). Alternatively, the type can be indicated
by appending a type suffix (e.g. % for Integer) to the function name (see the section Data types).

The function definition ends with End Function. The Exit Function statement can be used to exit a function
prematurely.

Declaring parameters
[ByVal | ByRef] Variable [As Type]

The keywords ByVal or ByRef (default value) are used to indicate whether the parameter is passed by value or
by reference (see the section Passing parameters via ByRef or ByVal).

Type specifies the data type (String, Integer, Double, Long, Variant). Alternatively, the type can be indicated
by appending a type suffix (e.g. % for Integer) to the variable name (see the section Data types).

See also: Dim, End, Exit, Sub

Example:

Sub Main
For i% = 1 to 10
Print GetColor2 (i%)
Next i

End Sub

Function GetColor2 (c%) As Long
GetColor2 = c% * 25
If ¢c% > 2 Then

GetColor2 = 255 ' 0x0000FF - Red
End If
If ¢c% > 5 Then

GetColor2 = 65280 ' 0x00FF00 - Green
End If
If ¢c% > 8 Then

GetColor2 = 16711680 ' OxFFO0000 - Blue
End If

End Function

Statements and functions fromAto Z

GetObject (function)

GetObject (Name [,Class])

Returns a reference to an OLE object that has already been created.

Name is the name of a file that includes the object. If Name is empty, Class must be indicated.
Class is the name under which the object is listed in the Windows Registry.

See also: CreateObject, Set, section OLE Automation

Gosub ... Return (statement)

Gosub Label

Label:
Statement (s)
Return

Gosub jumps to a place in the script that is marked with the jump target Label; Return goes back to the calling
place.

The jump target Label must reside inside the same subroutine or function from which the Gosub command is
called.

Note: Gosub ... Return is provided only for compatibility with older Basic versions. It is recommended to use
the statement Sub for subroutines instead.

See also: Goto, Sub, section Flow control

Example:

Sub Main
Print "Main program"
Gosub Detour

Exit Sub
Detour:

Print "Subroutine"
Return
End Sub

Statements and functions fromAto Z

Goto (statement)

Goto Label

Label:
Statements

Unconditional jump to the target Label.

The jump target Label must reside inside the same subroutine or function from which the command Goto is
called.

Note: This statement is provided only for compatibility reasons. Use of Goto statements makes program code
unnecessarily complicated. It is recommended to use structured control statements (Do ... Loop, For ... Next, If
... Then ... Else, Select Case) instead.

See also: Gosub Return, Sub, section Flow control

Example:

Sub Main

Dim x

For x =1 to 5
Print x
If x > 3 Then

Goto Labell

End If

Next x

Labell:
Print "That's enough!"

End Sub

Hex (function)

Hex (Num)

Returns a string with the hexadecimal representation of the given number.
Num can be any numeric expression; it is rounded to the next integer.

The result can be up to eight digits long.

See also: Oct

Example:

Sub Main

Statements and functions fromAto Z

Dim Msg As String, x%

x% = 1024
Msg =Str(x%) & " decimal is identical to "

Msg = Msg & Hex(x%) & " hexadecimal."
MsgBox Msg
End Sub

Hour (function)

Hour (Expression)
Returns the hour of the given time as an integer value.
Expression is a numeric or a string expression which represents a time.

See also: Date, Day, Minute, Month, Now, Second, Time, Weekday, Year

Example:
Sub Main
Tl = Now ' Now = current date + time
MsgBox T1
MsgBox "Day: " & Day(T1)
MsgBox "Month: " & Month (T1)
MsgBox "Year: " & Year(T1l)
MsgBox "Hours: " & Hour (T1l)
MsgBox "Minutes: " & Minute (T1)
MsgBox "Seconds: " & Second(T1)
End Sub

If ... Then ... Else (statement)

If Condition Then
[Statements]
ElseIf Condition Then

[Statements]]...
[Else

[Statements]]
End If

Or:

If Condition Then Statements [Else Statements]

Executes a group of statements if Condition is true. Optionally executes a different group of statements if
Condition is false (see also the section Flow control).

Statements and functions fromAto Z

See also: Select Case, section Flow control

Example:
Sub IfTest

Dim Gender as String

Gender = InputBox ("Enter your gender (m or £f)")
If Gender = "m" Then
MsgBox "You are male."
ElseIf Gender = "f" Then
MsgBox "You are female."
Else
MsgBox "Please enter either m or f!"
End If
End Sub

Input (function)

Input(n, [#]FileNumber)

Reads a string from a file.

n is the number of the characters (bytes) to be read.

FileNumber is the number assigned to the respective file by the Open statement.
See also: Line Input, Open, Seek

Example:
Sub Main

Open "TESTFILE" For Input As #1 ' Open file

Do While Not EOF (1) ' Repeat until end of file
MyStr = Input (10, #1) ' Read 10 characters
MsgBox MyStr

Loop

Close #1 ' Close file

End Sub

InputBox (function)

InputBox (Prompt$ [, [Title$] [, [Default$] [,X, Y111)

Displays a dialog box in which the user can input something. The result is a string consisting of the user input.

Statements and functions fromAto Z

Welcome
wihat iz your name?

Cance

\ii
=
x

Prompt$ is the string to be shown in the dialog box.

The following parameters are optional:

Title$ is the string to be shown in the title bar.

Default$ is the string shown in the input box by default.

X and Y are the screen coordinates of the input box in screen pixels.

See also: Dialog

Example:
Sub Main
Title$ = "Welcome!"
Prompt$ = "What is your name?"
Default$ = ""
X% = 100
Y% = 200

N$ = InputBox (Prompt$, Title$, Default$, X%, Y%)
MsgBox "Hello " & N$ & "I

End Sub

InStr (function)

InStr (Start, String, SearchString)
Returns the position of the first occurrence of the string SearchString within the string String.

Start is the starting position of the search; use the value 1 to search within the whole string. Start must be a
positive integer number.

String is the string expression to be searched.
SearchString is the string expression to search for.
See also: Mid, StrComp

Example:

Statements and functions fromAto Z

Sub Main
BS = "SoftMaker Basic"
A = InStr(2, BS$, "Basic")
MsgBox A

End Sub

Int (function)

Int (Num)
Returns the integral part of a numerical expression.

The difference to the Fix function is in the handling of negative numbers: While Int always returns the next
integer less than or equal to Num, the function Fix simply removes the part after the decimal point (see
example).

See also: Fix

Example:

Sub Main
Print Int(1.4) '-> 1
Print Fix(1.4) '-> 1
Print Int(-1.4) '-> =2
Print Fix(-1.4) > -1

End Sub

IsDate (function)

IsDate (Variant)
Checks whether the passed Variant variable can be converted to a date.

See also: IsEmpty, IsNull, IsNumeric, VarType

IsEmpty (function)

IsEmpty (Variant)

Checks whether the passed Variant variable has been initialized.

Statements and functions fromAto Z

See also: IsDate, IsNull, IsNumeric, VarType, section Special behavior of the Variant data type

Example:
Sub Main
Dim x ' Empty because no value was assigned
MsgBox "IsEmpty(x): " & IsEmpty (x)
x =5 ' Is not empty anymore
MsgBox "IsEmpty(x): " & IsEmpty (x)
x = Empty ' Is empty again
MsgBox "IsEmpty(x): " & IsEmpty (x)
End Sub

IsNull (function)

IsNull (Variant)
Checks whether the passed Variant variable has the value "Null".

The special value "Null" shows that the variable does not have any value. Please note that this value is different
from the numeric value 0, from empty strings and from the special value Empty which shows that a variable
has not been initialized.

See also: IsDate, IsEmpty, IsNumeric, VarType, section Special behavior of the Variant data type

IsNumeric (function)

IsNumeric (Variant)
Checks if the passed Variant variable can be converted to a number.

See also: IsDate, IsEmpty, IsNull, VarType

Example:
Sub Test

Dim TestVar
TestVar = InputBox ("Enter a number or text:")

If IsNumeric(TestVar) Then
MsgBox "Input is numeric."
Else
MsgBox "Input is not numeric."
End If

End Sub

Statements and functions fromAto Z

Kill (statement)

Kill FileName
Deletes the given file(s).

You can use wildcard characters such as "*" and "?" in FileName. For example, the following command deletes
all files with the file extension "bak":

Kill "* .bak"
See also: RmDir

Example:

Const NumberOfFiles = 3

Sub Main
Dim Msg ' Declare variables
Call MakeFiles () ' Create files
Msg = "Some test files were created. "

Msg = Msg & "Click on OK to delete them again."
MsgBox Msg
For i = 1 To NumberOfFiles
Kill "TEST" & o ' Delete files
Next i

End Sub

Sub MakeFiles ()

Dim i, FNum, FName ' Declare variables
For i = 1 To NumberOfFiles
FNum = FreeFile ' Next free file pointer
FName = "TEST" & i
Open FName For Output As Fnum ' Open file
Print #FNum, "This is test #" & i ' Write to file
Print #FNum, "Here comes another "; "line"; i
Next i
Close ' Close all files
End Sub

LBound (function)

LBound (Array [,Dimension])

Returns the lowest index of the given dimension of an array.

If Dimension is not indicated, the first dimension of the array is used.

Statements and functions fromAto Z

See also: Dim, Option Base, ReDim, UBound

Example:

Option Base 1

Sub Main

Dim a(10,20)

Print "lst dimension: " & LBound(a) & " to " & UBound(a)

Print "2nd dimension: " & LBound(a, 2) & " to " & UBound(a, 2)
End Sub

LCase (function)

LCase (String)
Converts a string to lowercase.
See also: UCase

Example:

Sub Main
MsgBox LCase ("Think BIG!") ' gives "think big!"
End Sub

Left (function)

Left(String, n)
Returns a string consisting of the first n characters of the passed string String.
See also: Len, Mid, Right

Example:
Sub Main

Dim LWord, Msg, RWord, SpcPos, UsrInp

Msg = "Enter two words "

Msg = Msg & "separated by a space character."

UsrInp = InputBox (Msg)

SpcPos = InStr(l, UsrInp, " ") ' Find space character

If SpcPos Then

LWord = Left (UsrInp, SpcPos - 1) ' Left word
RWord = Right (UsrInp, Len (UsrInp) - SpcPos) ' Right word
Msg = "The first word is " & LWord & ","

Msg = Msg & " the second word is " & RWord & "."
Else

Statements and functions fromAto Z

Msg = "You did not enter two words."
End If

MsgBox Msg

End Sub

Len (function)

Len (String)
Returns the length of a string.

See also: InStr

Example:
Sub Main
AS = "BasicMaker"
StrLen = Len (AS) ' Result: 10

MsgBox StrLen

End Sub

Let (statement)

[Let] Variable = Expression
Assigns a value to a variable.
The keyword Let was necessary only in older versions of BASIC. Nowadays it is usually omitted.
Example:
Sub Main
Dim Msg, Pi
Let Pi = 4 * Atn (1)

Msg = "Pi = " & Str(Pi)
MsgBox Msg

End Sub

Statements and functions fromAto Z

Line Input # (statement)

Line Input [#]FileNumber, Name
Reads a line from a file and stores the result in the string or Variant variable Name.

FileNumber is the number assigned to the file by the Open statement. The file must have been opened with the
command Open for reading beforehand.

The statement Line Input reads the characters from the file until a line feed (LF) or a combination of carriage
return + line feed (CR+LF) is encountered.

See also: Input, Open, Seek

Example:
Sub Main
Open "c:\autoexec.bat" For Input As #1 ' Open file
While Not EOF (1) ' Repeat until end of file
Line Input #1, TextLine ' Read line from file
Print TextLine ' Output line
Wend
Close #1 ' Close file
End Sub

Log (function)

Log (Num)

Returns the natural logarithm of a number.
The parameter Num must be greater than 0.
See also: Exp

Example:
Sub Main

For i = 1 to 3
Print Log (i)
Next i

End Sub

Statements and functions fromAto Z

Mid (function)

Mid (String, Start [, Length])

Returns a substring of the passed string String. It starts with the position Start and is Length characters long. If
Length is omitted, the entire rest of the string is returned.

See also: Len, Left, Right

Example:
Sub Main

MidTest = Mid("Potato salad", 8, 4)
MsgBox MidTest ' Result: "sala"

End Sub

Minute (function)

Minute (Expression)
Returns the minute of the given time as an integer number.
Expression is a numeric or a string expression which represents a time.

See also: Date, Day, Hour, Month, Now, Second, Time, Weekday, Year

Example:
Sub Main
Tl = Now ' Now = current date + time
MsgBox T1
MsgBox "Day: " & Day(T1)
MsgBox "Month: " & Month(T1)
MsgBox "Year: " & Year (T1l)
MsgBox "Hours: " & Hour (T1)
MsgBox "Minutes: " & Minute(T1)
MsgBox "Seconds: " & Second(T1)
End Sub

Statements and functions fromAto Z

MkDir (statement)

MkDir Path
Creates a new folder.
The parameter Path may not have more than 255 characters.

See also: ChDir, ChDrive, RmDir

Example:

Sub Main
ChDir "c:\"
MkDir "Test"

MsgBox "The folder c:\Test was created."

End Sub

Month (function)

Month (Expression)
Returns the month of the given date as an integer number.
Expression is a numeric or string expression which represents a date.

See also: Date, Day, Hour, Minute, Now, Second, Time, Weekday, Year

Example:
Sub Main
Tl = Now ' Now = current date + time
MsgBox T1
MsgBox "Day: " & Day(T1)
MsgBox "Month: " & Month(T1)
MsgBox "Year: " & Year (T1l)
MsgBox "Hours: " & Hour (T1)
MsgBox "Minutes: " & Minute (T1)
MsgBox "Seconds: " & Second(T1)
End Sub

Statements and functions fromAto Z

MsgBox (function)

MsgBox (Text [, Typel [, Titlel)

Displays a message box.

The return value shows which button was pressed to dismiss the message box (see below).
Text is the string to be shown in the message box.

The optional parameter 7ype indicates which buttons and which icon are displayed in the message box (see
below). The default setting is to show only the OK button without any icons.

The optional parameter Title indicates which text will be displayed in the title bar (default value: empty).

See also: Dialog, InputBox

Values for the parameter "Type™:

Symbolic constant Value Meaning

MB_OK 0 Display only the OK button.
MB_OKCANCEL 1 Display the buttons OK and Cancel.
MB_ABORTRETRYIGNORE 2 Display the buttons Cancel, Retry, Ignore.
MB_YESNOCANCEL 3 Display the buttons Yes, No, Cancel.
MB_YESNO 4 Display the buttons Yes and No.
MB_RETRYCANCEL 5 Display the buttons Retry and Cancel.
MB_ICONSTOP 16 Display the icon for critical messages.
MB_ICONQUESTION 32 Display the icon for questions.
MB_ICONEXCLAMATION 48 Display the icon for warning messages.
MB_ICONINFORMATION 64 Display the icon for informational messages.
MB_DEFBUTTON1 0 Make the first button the default button.
MB_DEFBUTTON2 256 Make the second button the default button.
MB_DEFBUTTON3 512 Make the third button the default button.
MB_APPLMODAL 0 The message box is application-modal. The current task does not accept

input until the user closes the message box.

Statements and functions fromAto Z

MB_SYSTEMMODAL 4096 The message box is system-modal. The whole system does not accept any
input until the user closes the message box (use only for critical errors!).

From each of the four shown groups a value can be chosen. Combine the individual constants by adding their
values.

The return values of the MsgBox function

The return value of this function indicates which button was pressed to dismiss the message box:

Symbolic constant Value Meaning
IDOK 1 Button OK
IDCANCEL 2 Button Cancel
IDABORT 3 Button Abort
IDRETRY 4 Button Retry
IDIGNORE 5 Button Ignore
IDYES 6 Button Yes
IDNO 7 Button No
Example:

This example uses MsgBox to display a confirmation dialog.
Sub Main

Dim DgDef, Msg, Response, Title

Title = "MsgBox Example"

Msg = "Do you want to continue?"

DgDef = MB YESNOCANCEL + MB ICONQUESTION + MB DEFBUTTON3
Response = MsgBox (Msg, DgDef, Title)

If Response = IDYES Then

Msg = "You have chosen Yes."
ElseIf Response = IDCANCEL Then
Msg = "You have chosen Cancel."
Else
Msg = "You have chosen No."
End If
MsgBox Msg

End Sub

Statements and functions fromAto Z

Name (statement)

Name OIdName As NewName
Renames the file OldName to NewName.

Each of the two parameters must identify an individual file. Wildcard characters such as "*" or "?" are not
allowed.

See also: ChDir, Kill

Example:

Sub Main
Name "testfile" As "newtest"
End Sub

Now (function)

Now [()]
Returns the current system time (date and time).

The Now function returns a result of the type Variant consisting of date and time. The positions to the left of
the decimal point define the date, the positions to its right the time.

See also: Date, Day, Hour, Minute, Month, Second, Time, Weekday, Year

Example:
Sub Main
Tl = Now ' Now = current date + time
MsgBox T1
MsgBox "Day: " & Day(T1)
MsgBox "Month: " & Month(T1)
MsgBox "Year: " & Year (T1l)
MsgBox "Hours: " & Hour (T1)
MsgBox "Minutes: " & Minute (T1)
MsgBox "Seconds: " & Second(T1)
End Sub

Statements and functions fromAto Z

Oct (function)

Oct (Num)

Returns a string with the octal representation of the given number.
Num can be any numeric expression; it is rounded to the next integer.
See also: Hex

Example:

Sub Main

Dim Msg, Num

Num = InputBox ("Enter a number.")

Msg = "The decimal value " & Num & " is identical to
Msg = Msg & "octal" & Oct (Num)

MsgBox Msg

n

End Sub

On Error (statement)

On Error Goto Label

Or:

On Error Resume Next

Or:

On Error Goto 0
Enables an error handling routine for the handling of runtime errors:

= On Error Goto Label indicates that in case of a runtime error execution should continue at the given target
Label.

* On Error Resume Next indicates that runtime errors are simply ignored. Attention: In this case, a runtime
error can cause unpredictable results.

= On Error Goto 0 disables error trapping — runtime errors cause the program to terminate with an error
message.

An On Error statement is only valid inside the subroutine or function in which it resides.

If the script jumps to a label using the On Error Goto statement, you can resume execution at the calling place
using the Resume statement. The script execution will then continue with the next line.

See also: Resume

Statements and functions fromAto Z

Example:

In this example, an error is intentionally caused in order to execute the error handling routine at the label
"Error". Then the user is asked whether the script's execution should be continued or not. If the answer is "Yes",
execution will continue using the Resume Next command with the next line after the runtime error. If the
answer is "No", execution ends with the Stop command.

Sub Main
On Error Goto MyErrorHandler
Print 1/0 ' Causes a "division by zero" error
MsgBox "End"
Exit Sub
MyErrorHandler: ' Error-handling routine
Dim DgDef, Msg, Response, Title
Title = "Error"
Msg = "A runtime error has been raised. Do you want to resume execution?"

DgDef = MB YESNO + MB ICONEXCLAMATION
Response = MsgBox (Msg, DgDef, Title)
If Response = IDYES Then

Resume Next
Else

Stop
End If

End Sub

For testing purposes, runtime errors can be artificially raised using the Err.Raise command.
Syntax: Err.Raise Number

Number is the number of a runtime error. There are the following runtime errors:

3: "RETURN without GOSUB"

5: "Invalid procedure call"

6: "Overflow"

7: "Out of memory"

9: "Subscript out of range"

10: "Array is fixed or temporarily locked"
11: "Division by zero"

13: "Type mismatch"

14: "Out of string space"

16: "Expression too complex”

17: "Can't perform requested operation"
18: "User interrupt occurred”

20: "RESUME without error"

28: "Out of stack space"

35: "Sub, Function, or Property not defined"
47: "Too many DLL application clients"
48: "Error in loading DLL"

49: "Bad DLL calling convention"

51: "Internal error"

52: "Bad file name or number"

53: "File not found"

54: "Bad file mode"

55: "File already open"

57: "Device 1/O error"

Statements and functions fromAto Z

58: "File already exists"

59: "Bad record length"

60: "Disk full"

62: "Input past end of file"

63: "Bad record number"

67: "Too many files"

68: "Device unavailable"

70: "Permission denied"

71: "Disk not ready"

74: "Can't rename with different drive'
75: "Path/File access error”

76: "Path not found"

91: "Object variable or WITH block variable not set"
92: "For loop not initialized"

93: "Invalid pattern string"

94: "Invalid use of NULL"

'

OLE Automation errors:

424: "Object required”

429: "OLE Automation server cannot create object"

430: "Class doesn't support OLE Automation"

432: "File name or class name not found during OLE Automation operation"
438: "Object doesn't support this property or method"

440: "OLE Automation error"

443: "OLE Automation object does not have a default value"
445: "Object doesn't support this action"

446: "Object doesn't support named arguments”

447: "Object doesn't support current local setting"

448: "Named argument not found"

449: " Argument not optional"

450: "Wrong number of arguments"

451: "Object not a collection”

Miscellaneous errors

444 "Method not applicable in this context"
452: "Invalid ordinal"

453: "Specified DLL function not found"
480: "ByRef parameter has the wrong type"

Open (statement)

Open FileName [For Mode] [Access AccessMode] As [#]FileNumber
Opents a file for input/output operations.
FileName is the name of the file.

The optional parameter Mode can take one of the following values:

Statements and functions fromAto Z

Mode Description
Input Sequential input. The file must already exist. AccessMode, if given, must be set to Read.
Output Sequential output. The file is automatically created for output. If a file with the given name already

exists, the file will be overwritten. AccessMode, if given, must be set to Write.

Append Sequential output. Identical to Output, however the file pointer will be set to the end of the file, so
that all following output commands append data to the existing file.

The optional parameter AccessMode restricts the type of access to the file:

AccessMode Description

Read Opens the file only for reading.

Write Opens the file only for writing.

Read Write Opens the file for reading and writing.

If the file does not exist, it will be automatically created, if either Append or Qutput mode was chosen;
otherwise the Open command fails.

If the file is already opened by another process or the desired access mode is not possible, the Open command
fails.

FileNumber is an integer value between 1 and 255 which identifies the file in the following access functions.
The index of the next free file pointer can be returned using the FreeFile function.

See also: Close, FreeFile

Example:

Sub Main
Open "TESTFILE" For Output As #1 ' Create file
userDatal$ = InputBox ("Enter one text line.")
userData2$ = InputBox ("Enter one more text line.")
Write #1, userDatal, userData?2 ' Write lile
Close #1
Open "TESTFILE" for Input As #2 ' Open file

Print "File contents:"
Do While Not EOF (2)

Line Input #2, FileData ' Read line
Print FileData
Loop
Close #2 ' Close file
Kill "TESTFILE" ' Delete file

End Sub

Statements and functions fromAto Z

Option Base (statement)

Option Base {01}
Defines the default lower bound for array indices. The allowed values are 0 and 1.

If Option Base is not specified, the lower bound of all arrays that do not explicitly specify their lower bound is
0.

This statement must reside outside a procedure and before all array definitions.
See also: Dim, LBound, section Arrays

Example:

Option Base 1

Sub Main
Dim A (20)
Print "The lower bound of the array is: " & LBound(A) & "."
Print "The upper bound of the array is: " & UBound(A) & "."
End Sub

Option Explicit (statement)

Option Explicit
Causes the usage of undefined variables to be flagged as a syntax error.

By default, variables which are used without having been declared before with Dim or Static, are silently
created (as Variant variables). This is convenient, but makes typos in variable names go unnoticed.

When using the Option Explicit statement, the use of unknown variable names causes an error message.

Example:

Option Explicit

Sub Main
Print y ' Error because y was not declared.
End Sub

Statements and functions fromAto Z

Print (statement)

Print Expression [, ...]
Outputs data in BasicMaker's output window.

An additional output window pane will appear in BasicMaker automatically for that purpose (unless already
present).

See also: MsgBox, Print #

Example:

Sub PrintExample
Dim Pi
Pi =4 * Atn (1) ' Calculate Pi
Print Pi

End Sub

Print # (Statement)

Print #FileNumber, [Expression]

Writes data to a file.

FileNumber is a number assigned to a file by Open statement.
Expression consists of the characters to be written.

If Expression is omitted, an empty line is output. Please note that in this case you still need to add a trailing
comma to the command (e.g., Print #1,).

See also: Open, Print, Seek, Write #

Example:
This example writes data to a test file and then reads it back in.
Sub Main

Dim FileData, Msg, NL

NL = Chr(10) ' Chr(10)=New line
Open "TESTFILE" For Output As #1 ' Create file
Print #1, "This is a test for the Print # statement"
Print #1, "Line 2"

Print #1, "Line 3"

Close ' Close all files
Open "TESTFILE" for Input As #2 ' Open file
Do While Not EOF (2)

Line Input #2, FileData ' Read lines

Statements and functions fromAto Z

Msg = Msg & FileData & NL
MsgBox Msg

Loop
Close ' Close all files
Kill "TESTFILE" ' Delete file

End Sub

ReDim (statement)

ReDim [Preserve] VarName (Subscripts) [As Typel [, ...]
Use the ReDim statement to set or change the length of a dynamic array.

The array contents will be erased at this point, unless you prepend Preserve to the variable name and change
only the length of the last dimension.

VarName is the name of the array variable.
Subscripts defines the number and size of the dimensions (see the section Arrays).

Type is the data type (see the section Data types).

Dynamic arrays

To create a dynamic array, it must first be declared with the statements Global or Dim, but with empty
parentheses instead of the usual specification of the number and size of the dimensions.

Example: pim A ()
The number and size of the dimensions can be later specified in the first call of the ReDim statement.
Example: ReDim 2 (42)

In further invocations of the ReDim statement, the size of the dimensions can be changed at will. The number
of the dimensions and the type of the array however cannot be changed after the initial setting.

Note: When executing the ReDim statement, the existing content of the array is deleted.

If you use the keyword Preserve together with this statement, you can only change the last dimension. If an
array has, for example, two dimensions, only the second dimension can be enlarged or shrunk. But the
advantage is that: the existing content of the array is preserved.

Example:

Dim B ()
ReDim B (10)

ReDim Preserve B (20)

See also: Dim, Option Base, Static, section Arrays

Statements and functions fromAto Z

Rem (statement)

Rem Comment

Or:

' Comment
Marks comments. Comments are ignored during execution of the script.

See also: section Syntax fundamentals

Example:

Rem This is a comment
' This is also a comment

Resume (statement)

Resume [0]

Or:

Resume Next

Or:

Resume Label
Ends an error handling routine called by the On Error statement and continues execution of the script.

See also: On Error

Example:
Sub Main
On Error Goto MyErrorHandler
Print 1/0 ' Causes a "division by zero" error
MsgBox "End"
Exit Sub
MyErrorHandler: ' Error-handling routine
Dim DgDef, Msg, Response, Title
Title = "Error"
Msg = "A runtime error has been raised. Do you want to resume execution?"

DgDef = MB YESNO + MB ICONEXCLAMATION
Response = MsgBox (Msg, DgDef, Title)
If Response = IDYES Then

Resume Next
Else

Stop

Statements and functions fromAto Z

End If

End Sub

Right (function)

Right (String, n)
Returns a string consisting of the last n characters of the passed string String.
See also: Len, Left, Mid

Example:
Sub Main

Dim LWord, Msg, RWord, SpcPos, UsrInp

Msg = "Enter two words "

Msg = Msg & "separated by a space character."
UsrInp = InputBox (Msg)

SpcPos = InStr(l, UsrInp, " ") ' Find space character
If SpcPos Then
LWord = Left(UsrInp, SpcPos - 1) ' Left word
RWord = Right (UsrInp, Len (UsrInp) - SpcPos) ' Right word
Msg = "The first word is " & LWord & ","
Msg = Msg & " the second word is " & RWord & "."
Else
Msg = "You did not enter two words."
End If

MsgBox Msg

End Sub

RmDir (statement)

RmDir Path
Removes the given folder.
The parameter must contain the folder path in the notation DriveLetter:Folder.

See also: ChDir, ChDrive, CurDir, Kill

Example:
Sub Main
Dim dirName As String
dirName = "t1"
MkDir dirName
MkDir "t2"

MsgBox "Folders tl and t2 were created. Click on OK to remove them."

Statements and functions fromAto Z

RmDir "t1"
RmDir "t2"
End Sub

Rnd (function)

Rnd [()]

Generates a random number between 0 and 1.

Second (function)

Second (Expression)
Returns the second of the given time as an integer number.
Expression is a numeric or a string expression which represents a time.

See also: Date, Day, Hour, Minute, Month, Now, Time, Weekday, Year

Example:
Sub Main
Tl = Now ' Now = current date + time
MsgBox T1
MsgBox "Day: " & Day(T1)
MsgBox "Month: " & Month(T1)
MsgBox "Year: " & Year (T1l)
MsgBox "Hours: " & Hour (T1)
MsgBox "Minutes: " & Minute (T1)
MsgBox "Seconds: " & Second(T1)
End Sub

Seek (statement)

Seek [#]FileNumber, Position
Sets the file pointer to a new position in a file. This command works only on open files.

FileNumber is a number assigned to a file by Open statement.

Statements and functions fromAto Z

Position is the position within the file from which the next read or write operation should start (as offset in
bytes from the beginning of the file).

See also: Open

Example:
Sub Main
Open "TESTFILE" For Input As #1 ' Open file
For i = 0 To 24 Step 3
Seek #1, i ' Set file pointer
MyChar = Input(l, #1) ' Read character
Print MyChar ' Output character
Next i
Close #1 ' Close file
End Sub

Select Case (statement)

Select Case Expression

[Case Valuel
[Statements]]

[Case ValueZ2
[Statements]]

[Case Else
[Statements]]

End Select

Executes one of several statement blocks, depending on the value of the given expression (see also the section
Flow control).

A Select Case structure must be closed with End Select.
See also: If Then Else, section Flow control

Example:
Sub Main
Number = InputBox ("Enter an integer number between 1 and 3:")

Select Case Val (Number)

Case 1

MsgBox "You entered the number One."
Case 2

MsgBox "You entered the number Two."
Case 3

MsgBox "You entered the number Three."

Statements and functions fromAto Z

Case Else
MsgBox "Only the integer values between 1 and 3 are allowed!"
End Select

End Sub

SendKeys (statement)

SendKeys (Keys, [Wait])
Simulates keystrokes.
Keys is a string containing the keys to be pressed.

If the optional parameter Wait is True, control returns to the script only when the receiving application has
completed processing of the keystroke.

To pass "regular” keys, just type them — for example, "Test". Special keys such as the Enter or Alt key can be
added as follows:

= Thekeys+"~% () []{and} have a special meaning. If you want to use them verbatim, they must be
enclosed by curly braces — for example: "{%}" or {(}.

= Special keys such as the Enter key must be also enclosed by curly braces — for example: {Enter}. You can
find a list of the special keys in the next section Special keys supported by the SendKeys command.

= Key combinations containing the Shift, Alt and Ctrl keys can be added using one of the following prefixes

(+, " or %):

Shift+Enter: "+{Enter]"
Alt+F4: "% {F4}"
Strg+C: "Ac" (not “C!)

Pay attention to case: For example, "“c" represents the key combination Ctrl+C, but "*C" represents
Ctrl+Shift+C.

= If quotation marks need to be passed, they must be doubled — for example, "Arthur ""Two Sheds"" Jackson".

= A sequence of keys can be added by following the keystrokes with the number of repetitions, all enclosed by
curly braces: "{a 10}" repeats the key a ten times, {Enter 2} repeats the Enter key twice.

= The Enter key can be also expressed with the code ~. The code "ab~cd", for example, is identical to
"ab{Enter}cd"

Example:
Sub Main

X = Shell ("Calc.exe", 1) ' Invoke the Calculator application
For i = 1 To 5
SendKeys i & ".+}", True ' Send keystrokes
Next i
Msg = "The calculator will be closed now."

Statements and functions fromAto Z

MsgBox Msg

AppActivate "Calculator" ' Set the focus to the calculator
SendKeys "%{F4}", True ' Send Alt+F4 to close the application
End Sub

Special keys supported by the SendKeys command

The following special keys can be used with the SendKeys statement:

Special key String to pass

Escape {Escape} or {Esc}

Enter {Enter}

Shift key Prepend the sign + (for example +{F9} for Shift+F9)
Alt key Prepend the sign % (for example %{F9} for Alt+F9)
Ctrl key Prepend the sign * (for example ~{F9} for Ctrl+F9)
Tab {Tab}

Cursor left {Left}

Cursor right {Right}

Cursor down {Down}

Cursor ip {Up}

Home {Home}

End {End}

Page down {PageDn}

Page up {PageUp}

Backspace {Backspace} or {BS}

Delete {Delete} or {Del}

Insert {Insert}

Print Screen {PrtSc}

Ctrl+Break {Break}

Caps lock {CapsLock}

Statements and functions fromAto Z

Num lock {NumLock}
Numeric keypad 0 {NumPad0}
Numeric keypad 9 {NumPad9}
Numeric keypad / {NumPad/}

Numeric keypad * {NumPad*}
Numeric keypad - {NumPad-}

Numeric keypad + {NumPad+}
Numeric keypad . {NumPad.}

F1 {F1}

F12 {F12}

Set (statement)

Set Object = [New] ObjectExpression
Or:
Set Object = Nothing

The first notation connects an object variable to an OLE object; the second severs the link.

See also: Dim, Static, section OLE Automation

Statements and functions fromAto Z

Sgn (function)

Sgn (Num)

Returns the sign of a number.
The possible return values are:
= -1 if the number is <0

= 0 if the number = 0

= 1 if the number is > 0

See also: Abs

Shell (function)

Shell (AppName [, Model])
Starts a program.

The return value is a task ID which identifies the launched program. Values below 32 indicate that launching
the program failed.

AppName is the name of the executable file. The name must have one of the following file
extensions: .PIF, .COM, .BAT or .EXE.

The optional parameter Mode indicates in which window state the new program should be opened:

Value Meaning

1 Normal with focus (default value)
2 Minimized with focus

3 Maximized with focus

4 Normal without focus

6 Minimized without focus

See also: AppActivate, AppPlanMaker, AppTextMaker, CreateObject, GetObject

Example:
Sub Main

X = Shell ("Calc.exe", 1) ' Invoke the Calculator application

Statements and functions fromAto Z

If X < 32 Then
MsgBox "The calculator could not be started"”
Stop

End If

For 1 = 1 To 5
SendKeys 1 & ".+}", True ' Send keystrokes
Next i

Msg = "The calculator will be closed now."

MsgBox Msg

AppActivate "Calculator" ' Set the focus to the calculator
SendKeys "${F4}", True ' Send Alt+F4 to close the application

End Sub

Sin (function)

Sin (Num)
Returns the sine of an angle.
The angle must be expressed in radians.
See also: Atn, Cos, Tan
Example:
Sub Main
pi = 4 * Atn (1)
rad = 90 * (pi/180)

x = Sin(rad)
Print x

End Sub

Space (function)

Space (n)

Creates a string consisting of n space characters.
n accepts values between 0 and 32767.

See also: String

Example:

Sub Main
MsgBox "Mind the..." & Space(20) & "...gap!"
End Sub

Statements and functions fromAto Z

Sqr (function)
Sqr (Num)
Returns the square root of a number.

Num may not be smaller than 0.

Sub Root
Dim Title, Msg, Number
Title = "Calculation of the square root"
Prompt = "Enter a positive number:"

Number = InputBox (Prompt, Title)
If Number < 0 Then

Msg = "The root of negative numbers is not defined."
Else

Msg = "The root of " & Number & " is "

Msg = Msg & Sqr (Number) & "."
End If

MsgBox Msg

End Sub

Static (statement)

Static Variable
Allocates memory for a variable and defines its type.

Unlike variables created with the Dim command, Static variables remember their value during the whole
program runtime, even if they were declared inside a function.

See also: Dim, Function, Sub

Example:

' This example shows the usage of static variables.
' The value of the variable i in the procedure Joe is preserved.

Sub Main

For i = 1 to 2
Joe 2
Next i

End Sub

Sub Joe(j As Integer)

Static i
Print i

Statements and functions fromAto Z

i=1i+4+5
Print i

End Sub

Stop (statement)

Stop
Stops execution of the script immediately.
See also: End

Example:
Sub Main

Dim x, y, z
For x = 1 to 3
For vy = 1 to 3
For z = 1 to 3
Print z, vy, X
Next z
Next y
Stop
Next x

End Sub

Str (function)

Str (Num)
Converts a numeric expression to a string.

If a positive number is passed, the resulting string starts with a space character. For negative numbers, a minus
sign appears in this position.

See also: CStr, Format, Val

Example:
Sub Main

Dim msg

a = -1

MsgBox "Number = " & Str(a)

MsgBox "Abs (Number) =" & Str (Abs(a))
End Sub

Statements and functions fromAto Z

StrComp (function)

StrComp (Stringl, String2 [, IgnoreCasel)
Compares two strings.

If the parameter IgnoreCase is True, the casing of the letters is ignored. If it is False or omitted, the
comparison is case-sensitive.

The function returns the following result:
= 0 if the strings are equal

= -1 if Stringl < String?2

= 1 if Stringl > String2

String (function)

String (Num, Character)

Creates a string consisting of a specific character repeated n times.
Num is the desired number of repetitions.

Character is the character to be repeated.

See also: Space

Example:

Print String(80, ".")

Sub (statement)

Sub Name [(ArgumentList)]
[Dim Variable(s)]
[Statements]

[Exit Sub]

End Sub

Begins the definition of a subroutine.

Name is the name of the subroutine.

Statements and functions fromAto Z

ArgumentList is a comma-separated list of parameter declarations (see below).
The subroutine definition is ended with the End Sub command.

The Exit Sub command can be used to exit a subroutine prematurely.

Declaring parameters

[ByVal | ByRef] Variable [As Type]

The keywords ByVal or ByRef (default value) are used to indicate whether the parameter is passed by value or
by reference (see the section Passing parameters via ByRef or ByVal).

Type specifies the data type (String, Integer, Double, Long, Variant). Alternatively, the type can be indicated
by appending a type suffix (e.g. % for Integer) to the variable name (see the section Data types).

See also: Call, Dim, Function

Example:

Sub Main
Dim Varl as String
Varl = "Hello"
MsgBox "Test"
Test Varl

MsgBox Varl

End Sub

Sub Test (wvarl as String)
wvarl = "Bye!"

End Sub

Tan (function)

Tan (Num)
Returns the tangent of an angle.
The angle must be expressed in radians.

See also: Atn, Cos, Sin

Example:
Sub Main
Dim Msg, Pi
Pi = 4 * Atn (1) ' Calculate Pi
x = Tan(Pi/4)
MsgBox "Tan (Pi/4)=" & x
End Sub

Statements and functions fromAto Z

Time (function)

Time [()]
Returns the current system time in the format HH:MM:SS.
The separator can be changed using the Regional Settings applet in the Windows Control Panel.

See also: Date, DateSerial, DateValue, Hour, Minute, Now, Second, TimeSerial, TimeValue

Example:
Sub Main
Tl = Time
MsgBox T1
MsgBox "Hours: " & Hour (T1)
MsgBox "Minutes: " & Minute (T1)
MsgBox "Seconds: " & Second(T1)
End Sub

TimeSerial (function)

TimeSerial (Hour, Minute, Second)
Returns the time serial corresponding to the parameters Hour, Minute and Second.

See also: DateSerial, DateValue, Hour, Minute, Now, Second, Time, TimeValue

Example:

Sub Main
Print TimeSerial (09, 30, 59)
End Sub

TimeValue (function)

TimeValue (TimeString)

Returns a double precision serial number corresponding to the parameter TimeString. This parameter can be any
string that represents a time.

See also: DateSerial, DateValue, Hour, Minute, Now, Second, Time, TimeSerial

Statements and functions fromAto Z

Example:

Sub Main
Print TimeValue ("09:30:59")
End Sub

Trim, LTrim, RTrim (function)

Removes the leading or trailing space characters from a string.
LTrim(String) removes the leading spaces.

RTrim(String) removes the trailing spaces.

Trim (String) removes both leading and trailing spaces.

Example:

Sub Main
MyString = " <-Trim-> "
TrimString = LTrim(MyString) ' "<-Trim-> ".
MsgBox "|" & TrimString & "|"
TrimString = RTrim (MyString) ren <-Trim->".
MsgBox "|" & TrimString & "|"
TrimString = LTrim (RTrim (MyString)) ' "<-Trim->".
MsgBox "|" & TrimString & " |"
TrimString = Trim (MyString) ' "<-Trim->".
MsgBox "|" & TrimString & "|"

End Sub

Type (statement)

Type TypeName
Element As Type
Element As Type
Element As Type

End Type

Declares a user-defined type.

TypeName is the name of the new type.

Statements and functions fromAto Z

Element is the name of an element of this type.

Type is the data type of this element (Integer, Long, Single, Double, String, String*n, Variant or a user-
defined type).

After you have defined a user-defined type, you can declare variables of this new type using the commands
Dim x As TypeName and Static x As TypeName.

To access an element, use dot notation: Variable. Element.
The Type statement may not be used inside Sub or Function statements.
See also: Dim, Static, With, section Data types
Example:
Type typel
a As Integer

d As Double
s As String

End Type
Type type?2
a As String
o As typel
End Type
Type type3
b As Integer
c As type2
End Type

Dim var2a As type?2
Dim var2b As type2
Dim varla As typel
Dim var3a as type3

Sub Test
a =>5
varla.a = 7472
varla.d = 23.1415
varla.s = "TEST"
var2a.a = "43 - forty-three"
varz2a.o.s = "Hi"
var3a.c.o.s = "COS"
var2b.a = "943 - nine hundred forty-three"
var2b.o.s = "Yogi"

MsgBox varla.
MsgBox varla.
MsgBox varla.
MsgBox varza.
MsgBox varza.
MsgBox varzb.
MsgBox varzb.
MsgBox var3a.
MsgBox a
End Sub

Q0O vn oW
]

o 0
0]

Statements and functions fromAto Z

UBound (function)

UBound (ArrayName[, Dimension])

Returns the highest index of the given dimension of an array.

If Dimension is not indicated, the first dimension of the array is used.
See also: Dim, LBound, ReDim

Example:

Option Base 1

Sub Main

Dim a (10, 20 To 40)

Print "lst dimension: " & LBound(a) & " to " & UBound(a)

Print "2nd dimension: " & LBound(a, 2) & " to " & UBound(a, 2)
End Sub

UCase (function)

UCase (String)
Converts a string to uppercase.
See also: LCase

Example:

Sub Main
MsgBox UCase ("Think BIG!") ' gives "THINK BIG!"
End Sub

Val (function)

Val (String)
Converts a string to a number.
The string content is converted up to the first non-numeric character. Spaces, tabs and line feeds are ignored.

If the string does not start with a number, the result is O.

Statements and functions fromAto Z

Val ("2") gives 2

Val ("2 hours") gives 2

Val ("2 hours 30 minutes") gives 2
Val ("xyz 2") gives 0

See also: Str

Example:
Sub Main

Dim Msg

Dim YourVal As Double

YourVal = Val(InputBox$ ("Enter a number."))
Msg = "You entered the number " & YourVal
MsgBox Msg

End Sub

VarType (function)

VarType (VarName)
Returns the data type of a Variant variable.

The possible return values are:

Type Return value
Empty 0
Null 1
Integer 2
Long 3
Single 4
Double 5
Date 7
String 8
Object 9
Boolean 11

See also: IsDate, IsEmpty, IsNull, IsNumeric, section Special behavior of the Variant data type

Statements and functions fromAto Z

Example:

If VarType (x) = 5 Then Print "Variable is of type Double”

Weekday (function)

Weekday (Expression)

Returns the weekday of the given date.

The result is an integer value between 1 and 7, where 1=Sunday, 2=Monday, ... 7=Saturday.
Expression is a numeric or string expression which represents a date.

See also: Date, Day, Hour, Minute, Month, Now, Second, Time, Year

Example:

Sub Main
Print Weekday (Date)
End Sub

While ... Wend (statement)

While Condition
[Statements]
Wend

Executes a group of statements repeatedly as long as the given condition is true (see also the section Flow
control).

See also: Do Loop, section Flow control

With (statement)

With Object
[Statements]
End With
Executes a group of statements for the given object.

The With statement allows accessing the elements of an object without having to repeat the object name over
and over again.

Statements and functions fromAto Z

Note: With statements may be nested.

See also: While Wend, Do Loop, section Hints for simplifying notations

Example:

Type typel
a As Integer
d As Double
s As String
End Type

Type type?2
a As String
o As typel
End Type

Dim varla As typel
Dim var2a As type?2

Sub Main
With varla
.a = 65
.d = 3.14
End With

With var2a
.a = "Hello"

With .o
.s = "Bye!"
End With
End With

varla.s = "TEST"
MsgBox varla.
MsgBox varla.
MsgBox varla.
MsgBox varza.
MsgBox varza.

OV n oW

End Sub

Write # (statement)

Write #FileNumber, [Expression]

Writes data to a file.

The file must have been already opened with the Open statement in Output or Append mode.
FileNumber is the number assigned to the file by the Open statement.

Expression consists of one or more elements to output.

If Expression is omitted, an empty line is output. Please note that in this case you still need to add a trailing
comma to the command (e.g., Write #1,).

Statements and functions fromAto Z

See also: Open, Seek, Print #

Example:

Sub Main
Open "TESTFILE" For Output As #1 ' Create file
userDatal$ = InputBox ("Enter one text line.")
userData2$ = InputBox ("Enter one more text line.")
Write #1, userDatal, userDataZ2 ' Write data
Close #1
Open "TESTFILE" for Input As #2 ' Open file

Print "File contents:"

Do While Not EOF (2)

Line Input #2, FileData ' Read line
Print FileData
Loop
Close #2 ' Close file
Kill "TESTFILE" ' Delete file
End Sub

Year (function)

Year (Expression)

Returns the year of the given date.

Expression is a numeric or string expression which represents a date.
The result is an integer value between 100 and 9999.

See also: Date, Day, Hour, Minute, Month, Now, Second, Time, Weekday

Example:
Sub Main
Tl = Now ' Now = current date + time
MsgBox T1
MsgBox "Day: " & Day(T1)
MsgBox "Month: " & Month(T1)
MsgBox "Year: " & Year (T1l)
MsgBox "Hours: " & Hour (T1)
MsgBox "Minutes: " & Minute (T1)
MsgBox "Seconds: " & Second(T1)

End Sub

Appendix

The appendix contains the following information:

= Ribbon commands and corresponding menu commands

In this section you will find a table of all commands in the ribbon and the corresponding classic menu
command.

= Color constants

This section contains a list of all pre-defined color constants.

= Command-line parameters

Here, you will find an overview of parameters that can be used to directly trigger a specified program option
when you start BasicMaker.

Ribbon commands and corresponding menu commands

In this section, you will find a table of all commands in the ribbon interface and the respective corresponding
menu command in the classic menu interface.

Tip 1: You can switch the user interface between ribbon and classic menus at any time. To do so, choose the
command File | Options in the ribbon (or choose Tools > Options in the classic menu interface). In the
dialog box, switch to the Appearance tab and click on the User interface button. The program will display a
dialog box in which you can choose the desired user interface.

Tip 2: Use the "hamburger menu" (the icon = on the left in the Quick access toolbar) if you still want to
access the classic menu commands from the ribbon interface.

The subsequent table contains the following columns:

= Left column: The left column lists all ribbon commands in the program, listed according to the order of
ribbon tabs and in the following format: Ribbon tab | Command group | Command

= Right column: The right column lists all corresponding classic menu commands in the program in the
following format: Menu > Command

Example: The ribbon command File | Document | Save can be found under File > Save in the classic menu
interface.

Another entry >> is also added for some commands if the command can only be found in the submenu of an
icon or in a dialog box.

Appendix

Thus, here is the aforementioned table:

Appendix

=y s I I [ST N A

|

b Bl

Gl

Ribbon

File | File | New

File | File | Open

File | File | Close

File | Document | Save

File | Document | Save as

File | Document | Save all

File | Print | Page setup

File | Print | Print

File | File management | Versions
File | File management | File manager
File | Settings | Options

File | Settings | Customize >> Customize ribbon
File | File | Exit (if no document is open)
in the Quick access toolbar

in the Quick access toolbar

in the Quick access toolbar

Home | Edit | Paste

Home | Edit | Cut

Home | Edit | Copy

Home | Edit | Delete

Home | Program | Start

File > New

File > Open

File > Close

File > Save

File > Save as

File > Save all

File > Page setup

File > Print

File > File versions

File > File manager

Tools > Options

Tools > Customize

File > Exit

Edit > Undo

Edit > Redo

View > Touch mode

Edit > Paste

Edit > Cut

Edit > Copy

Edit > Delete

Program > Start

Appendix

Ribbon Menu

Home | Program | Step Program > Step over

Home | Program | Trace Program > Trace into

Home | Program | Reset Program > Reset

Home | Program | Insert/Delete breakpoint Program > Insert/delete breakpoint
#- Home | Program | Delete all breakpoints Program > Delete all breakpoints
] Home | Insert | Dialog Edit > Edit dialogs

[l Home | Insert | Bookmark Insert > Bookmark

A Home | Insert | SmartText Insert > SmartText

D Home | Insert | Document Insert > Document
Home | Insert | Symbol Insert > Symbol

1 Home | Search | Search Edit > Search
a+b Home | Search | Replace Edit > Replace

. Home | Search | Search again Edit > Search again

«w= Home | Search | Go to Edit > Go to

.. Home | Selection | Select all Edit > Select all

[jﬂ View | View | Bookmarks View > Bookmarks
L View| View | Watch View > Watch window
5 View | Window | Windows >> Window >

F‘h View | Window | Windows >> Close all Window > Close all

Appendix

Color constants

There are several properties in TextMaker and PlanMaker that let you retrieve or set colors. These are available
in two variations: once for working with BGR colors ("blue-green-red") and once with index colors — with the
latter, TextMaker's default colors are simply enumerated with consecutive numbers.

For example, Selection.Font.Color sets the color of the currently selected text in TextMaker to the BGR color
value that you pass as an argument. The method Selection.Font.ColorIndex, in contrast, expects an index
color.

On the next pages you fill find a list of all pre-defined color constants that can be used in such statements. It is
split into the following sections:

= Color constants for BGR colors

= Color constants for index colors

Color constants for BGR colors

Some of TextMaker's and PlanMaker's properties expect a BGR color (blue/green/red) as their argument. You
can either give an arbitrary value or choose one of the following constants:

smoColorAutomatic = -1 ' Automatic (see below)
smoColorTransparent = -1 ' Transparent (see below)
smoColorBlack = &h0é&
smoColorBlue = &hFF0000&
smoColorBrightGreen = &hOOFF00¢&
smoColorRed = &h0000&
smoColorYellow = &hOOFFFF&
smoColorTurquoise = GhFFFF00¢&
smoColorViolet = &h800080&
smoColorWhite = &hFFFFFF&
smoColorIndigo = &h993333¢
smoColorOliveGreen = &h003333&
smoColorPaleBlue = &hFFCC99&
smoColorPlum = &§h663399&
smoColorRose = &hCC99FF&
smoColorSeaGreen = §h669933&
smoColorSkyBlue = &hFFCC00¢&
smoColorTan = &h99CCFF&
smoColorTeal = &h808000&
smoColorAqua = &hCCCC33¢&
smoColorBlueGray = &h996666¢&
smoColorBrown = &h003399&
smoColorGold = &hOOCCFF&
smoColorGreen = &h008000&
smoColorLavender = &hFF99CC&
smoColorLime = &h00CC99&
smoColorOrange = &hOO66FF¢&

Appendix

smoColorPink
smoColorLightBlue
smoColorLightOrange
smoColorLightYellow
smoColorLightGreen
smoColorLightTurquoise
smoColorDarkBlue
smoColorDarkGreen
smoColorDarkRed
smoColorDarkTeal
smoColorDarkYellow
smoColorGray05
smoColorGrayl0
smoColorGrayl25
smoColorGrayl5
smoColorGray20
smoColorGray25
smoColorGray30
smoColorGray35
smoColorGray375
smoColorGray40
smoColorGray45
smoColorGray50
smoColorGray55
smoColorGray60
smoColorGray625
smoColorGray65
smoColorGray75
smoColorGray85
smoColorGray90
smoColorGray70
smoColorGray80
smoColorGray875
smoColorGray95

The colors smoColorAutomatic and smoColorTransparent serve specific purposes and cannot be used at

will:

= smoColorAutomatic lets you set the color of the sheet grid in PlanMaker to "Automatic".

= smoColorTransparent lets you set the background color of text to "Transparent” in TextMaker and

PlanMaker.

&hFFOOFF&
&hFF6633&
&hO0099FF&
&h99FFFF&
&hCCFFCC&
&hFFFFCC&
&h800000&
&h003300&
&h000080&
&h663300&
&h008080&
&hF3F3F3&
ShEGEGEGS&
&ShEOEOEO&
&hD9D9D9&
&hCCCCCC&
&hC0COCO&
&hB3B3B3&
&hAGAGAGS
&hAOAOAO&
&h999999¢
&h8C8C8C«&
&h808080&
&h737373&
&h666666&
&h606060&
&h595959¢
&h404040¢
&h262626&
&h191919¢«
&h4C4C4ACs
&h333333&
&h202020&
&hC0COCO&

Color constants for index colors

Some of TextMaker's and PlanMaker's properties expect an index color as their argument. You may exclusively
use one of the following values:

smoColorIndexAutomatic

smoColorIndexTransparent

smoColorIndexBlack
smoColorIndexBlue
smoColorIndexCyan
smoColorIndexGreen
smoColorIndexMagenta

-1 ' Automatic

-1 ' Transparent
0 ' Black

1 ' Blue

2 ' Cyan

3 ' Green

4 ' Magenta

(see below)
(see below)

Appendix

smoColorIndexRed
smoColorIndexYellow
smoColorIndexWhite
smoColorIndexDarkBlue
smoColorIndexDarkCyan
smoColorIndexDarkGreen
smoColorIndexDarkMagenta
smoColorIndexDarkRed
smoColorIndexBrown
smoColorIndexDarkGray
smoColorIndexLightGray

Red

Yellow
White

Dark blue
Dark cyan
Dark green
Dark magenta
Dark red
Brown

Dark gray
Light gray

Tip: Those properties that use BGR colors are more flexible and should be used preferably.

The colors smoColorIndexAutomatic and smoColorIndexTransparent serve specific purposes, as follows:

= smoColorIndexAutomatic sets the text color in TextMaker or the color of the sheet grid in PlanMaker to

"Automatic".

= smoColorIndexTransparent sets the background color of text to "Transparent" in TextMaker or
PlanMaker.

Appendix

Command-line parameters

Note: The command-line parameters described here only work on Windows.

Command-line parameters allow you to specify that BasicMaker is started immediately with a specific program
option rather than with the usual default behavior. You would like BasicMaker to jump to line 20 of the
specified script directly upon startup.

To insert a command-line parameter, proceed as follows:

1. Create a new shortcut to BasicMaker on the desktop. Ideally, give the link a distinctive name in order to
distinguish it more clearly.

2. Choose the properties of the shortcut: Right-click on the link for the context menu and select the entry
Properties.

3. The following dialog box with the Shortcut tab will then appear:

.. BasicMakerNX Properties ot
Security Details Previous Versions
General Shartcut Compatibility
- G BasicMakerMX

Target type: Application
Target location: SoftMaker Office NX

Target: er Cffice Mx\BasicMaker.exg" -Line=20 C:\Users I}

Start in: "C:\Program Files (x86)%5oft Maker Office NX\."

Shortcut key: |Mone |

Bun: Marmal window W
Comment:
Open Fle Location Change lcon... Advanced...

Carcs | | ooy

Appendix

407

4. In the input field Target after the file path ". . .\BasicMaker.exe", enter the desired parameter from the
table below. In the figure above, for example, this is the parameter -Line.

Important: There must be a space in front of the parameter and the parameter starts with a hyphen.

5. Confirm with OK.

When you open BasicMaker via this newly created link (double-click the link), the program will start directly
with the behavior of the parameter that was used.

Command-line parameters

Parameter Description
-N BasicMaker starts without opening a new default script.
-FO

-P"Path\FileName"

-Q"PrinterName","Path\FileName"

Note: No space is inserted
within the parameter.

-Line=xxx "Path\FileName"

Note: A space is required here before
"Path\FileName".

-S "Path\FileName"

Note: A space is required here before
"Path\FileName".

BasicMaker starts with an open dialog box for selecting a file.

BasicMaker starts and prints the specified script directly on the default
printer.

BasicMaker starts and prints the specified script directly on the specified
printer.

BasicMaker starts and jumps directly to the specified line of the specified
script (e.g. Line=20 jumps to line 20).

BasicMaker starts the specified script in silent mode (BasicMaker remains
hidden in the background).

- (operator) 41

! (suffix) 38

#

(suffix) 38

#include (statement) 325

$

$ (suffix) 38

%

% (suffix) 38

&

& (operator) 41
& (suffix) 38

&H (prefix for hexadecimal numbers) 36
&O (prefix for octal numbers) 36

*

* (operator) 41

/

/ (operator) 41

VAN

~ (operator) 41

+

+ (operator) 41

<

< (operator) 41
<= (operator) 41
<> (operator) 41

= (operator) 41

>

> (operator) 41
>= (operator) 41

A

Abs (function) 325

Absolute value 325

Accounting (property) 279

Activate (method) 68, 94, 172, 198, 228, 245, 310
ActiveCell (pointer to object) 198, 310
ActiveDocument (pointer to object) 68
ActiveSheet (pointer to object) 198, 228, 310
ActiveWindow (pointer to object) 68, 94, 198, 228
ActiveWorkbook (pointer to object) 198

Add (method) 56, 87, 91, 135, 166, 182, 220, 224,
243,297,316

Addition 41
AlertStyle (property) 297
Alignment (property) 125
AllCaps (property) 118, 284
AllowBreakInRow (property) 141
And 41
And (operator) 41
AppActivate (statement) 326
Application

activate 326

start 385
Application (object) 68, 198
Application (pointer to object) 68, 75, 79, 81, 82, 84,
85,87, 89,91,94, 103, 105, 108, 111, 118, 124, 125,
131, 133, 135, 137, 139, 141, 143, 145, 148, 151, 154,
157,158,162, 163, 165, 166, 169, 170, 172, 176, 181,
182, 184, 186, 188, 198, 210, 213, 214, 216, 218, 219,
220,222, 224,228, 238, 240, 243, 245, 252, 258, 275,
277,279, 284, 290, 292, 294, 297, 304, 305, 307, 309,
310, 316, 319, 321, 322

ApplyFormatting (method) 258
AppPlanMaker (function) 326
AppSoftMakerPresentations (function) 327
AppTextMaker (function) 327

Arctangent 328

Arithmetic functions 324

Arrays 40, 362, 394

Index

Asc (function) 328

Atn (function) 328

AutoCorrect (object) 85,219
AutoCorrect (pointer to object) 68, 198
AutoCorrectEntries (collection) 87,220
AutoCorrectEntry (object) 89, 222
AutoFilter (method) 258

AutoFilter (object) 304

AutoFilter (pointer to object) 245
AutoFilterMode (property) 245
AutoFit (method) 258
AutoFormatReplaceQuotes (property) 75
AutoWordSelection (property) 75

BackgroundPatternColor (property) 154, 294
BackgroundPatternColorIndex (property) 154, 294
Backup copies 22

Backup folder 22

BasicMaker 10

BColor (property) 118,284

BColorIndex (property) 118,284

Beep (statement) 329

Beep on errors 22

Begin Dialog ... End Dialog (statement) 47, 329
Bits (property) 68, 198

Blink (property) 118, 284

Bold (property) 118, 284

Bookmarks 18, 20
delete 18
insert 15,18

Bookmarks and the Go to command 18

Boolean (data type) 38

Border (object) 151,292

BorderBounds (property) 125

BorderClearance (property) 125

Borders (collection) 148, 290

Borders (pointer to collection) 125, 137, 141, 145, 258
BottomMargin (property) 108, 133,252
BottomPadding (property) 145, 258
BreakPageAtRow (property) 141

Breakpoints, use 29

Build (property) 68, 198

BuiltInDocumentProperties (pointer to collection) 94
BuiltInDocumentProperties (pointer to object) 228
Button 33

ByRef 46,354, 389

ByVal 46,354, 389

C

Calculate (method) 198, 228, 245
CalculateBeforeCopying (property) 228
CalculateBeforePrinting (property) 228
CalculateBeforeSave (property) 198, 228
Calculation (property) 198, 228

Call (statement) 329

Calling functions in DLLs 46

Cancel button 33, 49

Cancel scripts 28

CancelButton 49

Caption (property) 68, 198

Case (statement) 43

CDbl (function) 330

Cell (object) 145

Cell (pointer to object) 137

CellHidden (property) 258

Cells (collection) 143

Cells (pointer to collection) 141

Cells (pointer to object) 198, 245, 258
CentimetersToPoints (method) 68, 198
Character code 328, 332

Charset (property) 188, 322

ChDir (statement) 330

ChDrive (statement) 331

CheckBox 33,52

CheckBox (object) 163

CheckBox (pointer to object) 158
CheckSpellingAsYouType (property) 75,210
Chr (function) 332

Clnt (function) 332

Classic menus with toolbars 9, 22

Clear (method) 166, 258
ClearComments (method) 258
ClearConditionalFormatting (method) 258
ClearContents (method) 258
ClearFormats (method) 258
ClearInputValidation (method) 258
Clipboard 15

CLng (function) 333

Close (File) 12

Close (method) 91, 94, 172,224,228, 310
Close (statement) 333

Close all (Window) 20

Collection 56

Index

Collections, use 62, 193

Color (property) 118, 151, 284, 292

Color constants 403

Color constants for BGR colors 403

Color constants for index colors 404

ColorIndex (property) 118, 151, 284, 292
ColumnBreakBefore (property) 125

Columns (collection) 277

Columns (pointer to collection) 198

Columns (pointer to object) 245

ColumnWidth (property) 258

Combo box 33, 50

ComboBox 50

Command button 49

CommandBar (object) 84,218

CommandBars (collection) 82,216
CommandBars (pointer to object) 68, 198
Command-line parameters 406

Commands in the Edit menu of the dialog editor 32
Commands in the File menu of the dialog editor 31
Commands in the Insert menu of the dialog editor 33

Commands of the script editor
File ribbon tab 12
Home ribbon tab 15
Quick access toolbar 21
View ribbon tab 20

Comment (property) 258

Comments 378

CommentsPaneAutoShow (property) 176
Concatenation 41

Connect to PlanMaker 191

Connect to TextMaker 60

Const (statement) 334

Constants 334

Controls of a dialog box 48

Conversion 324

ConvertToTable (method) 111

ConvertToText (method) 137

Copy (method) 111,258

Copy text 15

CorrectlnitialCaps (property) 85
CorrectSentenceCaps (property) 85

Cos (function) 334

Cosine 334

Count (property) 56, 79, 82, 87, 91, 103, 124, 135,
139, 143, 148, 157, 166, 170, 182, 186, 213, 216, 220,
224,238, 243, 275, 277, 290, 305, 309, 316, 321

CreateBackup (property) 75,210

CreateObject (function) 56, 59, 190, 335
Criterial (property) 307

CSng (function) 335

CStr (function) 336

CurDir (function) 336

Currency (property) 279

CustomFormat (property) 279

Cut (method) 111,258

Cut text 15

Data types 38

Date 324
check for 360
determine current date 336, 370
determine day 337
determine month 367
determine weekday 396
determine year 398

Date (function) 336

Date/time formats of the Format function 351
DateFormat (property) 279

DateSerial (function) 337

DateValue (function) 337

Day (function) 337

Debug a script 28

Debugger 28

Decimal numbers 36

Declare (statement) 45, 46, 338
DefaultFileFormat (property) 75
DefaultFilePath (property) 75,210
DefaultTemplatePath (property) 75,210

Delete
bookmarks 18
text 15

Delete (method) 89, 111, 169, 222, 245, 258, 297
Delete all breakpoints (script) 29
Dialog (function) 47, 339

Dialog boxes 30, 47

Dialog definition 30, 47

Dialog editor 30

Dialog editor, open/close 30

Dialog editor, use 30

Dialog function 54

Dialog language 22

Digits (property) 279

Dim (statement) 40, 340
DisplayColumnHeadings (property) 245

DisplayCommentIndicator (property) 198, 228

DisplayFieldNames (property) 157
DisplayFonts (property) 82,216
DisplayFormulas (property) 310
DisplayGridlines (property) 245,310
DisplayHeadings (property) 310
DisplayHorizontalRuler (property) 172
DisplayHorizontalScrollBar (property) 172,310
DisplayRowHeadings (property) 245
DisplayRulers (property) 172
DisplayScrollBars (property) 68
DisplayTooltips (property) 82,216
DisplayVerticalRuler (property) 172
DisplayVerticalScrollBar (property) 172,310
DisplayWorkbookTabs (property) 310
Division 41

DlgEnable (statement) 341

DlgText (statement) 341

DlgVisible (statement) 342

DLL function 338

DLL functions 46

Do ... Loop (statement) 43, 342
Document (object) 94

Document (pointer to object) 111, 172
DocumentProperties (collection) 103, 238
DocumentProperty (object) 105, 240
Documents (collection) 91

Documents (pointer to collection) 68

Double (data type) 38
convert to 330

Drive
change 330, 331

DropCap (object) 133

DropCap (pointer to object) 125
DropDown (object) 165
DropDown (pointer to object) 158
Drop-down list 33, 50
DropListBox 50

Edit (in the dialog editor) 30

Edit dialogs (dialog editor) 30
EditDirectlyInCell (property) 198

Empty 38, 360

EnableCaretMovement (property) 94, 228
EnableSound (property) 75,210

End (property) 131

End (statement) 343

End Dialog (statement) 47

End of file 344

Entries (pointer to collection) 85,219
EOF (function) 344

Equal to (operator) 41

Erase (statement) 344

Err.Raise 371

Error 371

Error handling 371, 378
ErrorMessage (property) 297
ErrorTitle (property) 297
Euler’s number 345

Exit (File) 12

Exit (statement) 345

Exp (function) 345

Exponential function 345
Exponentiation 41
Export/Import of the settings 25

F

False 41
FieldShading (property) 176
File

close 333

copy 346

delete 362

open 373

rename 370

write 376

write to 397

File manager, use 13

File operations 47

File path, show in title bar 22
File pointer 380

File: Close 12

File: New 12

File: Open 12

File: Page setup 12

File: Print 12

File: Save 12

File: Save all 12

File: Save as 12

File operations 324
FileCopy (statement) 346
FileLen (function) 346
Filter (object) 307

Filters (collection) 305

Filters (pointer to collection) 304

Find and replace in the script editor 17
FirstLinelndent (property) 125

Fix (function) 346

FixedDecimal (property) 228
FixedDecimalPlaces (property) 228
Flow control 43, 324

Folder
change 330
create 367

determine 336
remove 379

Folder for file versions 22

Font (object) 118,284

Font (pointer to object) 111,258
FontName (object) 188, 322

FontName (property) 133

FontNames (collection) 186, 321
FontNames (pointer to collection) 68, 198
FooterMargin (property) 252

For ... Next (statement) 43, 347

For Each ... Next (statement) 56, 347
ForegroundPatternColor (property) 154, 294
ForegroundPatternColorIndex (property) 154,294
Form objects 157

Format (function) 348

FormField (object) 158

FormFields (collection) 157

FormFields (pointer to collection) 94
Formula (property) 258

Formulal (property) 297

Formula2 (property) 297

FormulaHidden (property) 258

FreeFile (function) 353

FullName (property) 68,94, 172, 184, 198, 228, 310,
319

Function (statement) 45, 354

Functions 45
callin DLLs 46

G

General information 30
GetObject (function) 56, 355
Global 334

Goto 18

Gosub (statement) 43

Gosub ... Return (statement) 355
GoTo (method) 111

Goto (statement) 43,356

Greater than (operator) 41

Greater than or equal to (operator) 41
Grid (dialog editor) 32

GridlineColor (property) 245,310
GridlineColorIndex (property) 245,310
Group box 33,53

HeaderMargin (property) 252

Height (property) 68, 141, 172, 198, 310
HeightRule (property) 141

Hex (function) 356

Hexadecimal 356

Hexadecimal numbers 36

Hidden (property) 245, 258
HighlightComments (property) 176
Hints for simplifying notations 64, 195
Horizontal Alignment (property) 258
Hour (function) 357

Hyphenation (property) 125

IDABORT 368

IDCANCEL 368

IDIGNORE 368

IDNO 368

IDOK 368

IDRETRY 368

IDYES 368

If ... Then ... Else (statement) 43, 357
IgnoreBlank (property) 297
Import/Export of the settings 25
InCellDropDown (property) 297
InchesToPoints (method) 68, 198
include (statement) 325

Index (property) 245

Input (function) 358

Input box 33, 50

InputBox (function) 358
InputMessage (property) 297
InputTitle (property) 297

Insert
bookmarks 18
SmartText entries 19

Insert (method) 258
InsertBreak (method) 111

InsertPicture (method) 111
InStr (function) 359
Int (function) 360

Integer (data type) 38
convert to 332

Intensity (property) 154,294
IsDate (function) 360
IsEmpty (function) 38, 360
IsNull (function) 38, 361
IsNumeric (function) 38, 361
Italic (property) 118, 284
Item 56

Item (pointer to object) 79, 82, 87,91, 103, 124, 135,
139, 143, 148, 157, 166, 170, 182, 186, 213, 216, 220,
224, 238, 243,275,277, 290, 305, 309, 316, 321

Item (property) 258
Iteration (property) 228

K

KeepTogether (property) 125, 141
KeepWithNext (property) 125
Keystroke, simulate 382

Kill (statement) 362

L

LBound (function) 362

LCase (function) 363

Left (function) 363

Left (property) 68, 172, 198, 258, 310
LeftIndent (property) 125
LeftMargin (property) 108, 133, 252
LeftPadding (property) 145,258

Len (function) 364

Length of a string 364

Less than (operator) 41

Less than or equal to (operator) 41
Let (statement) 364

Line Input # (statement) 365
LineSpacing (property) 125
LineSpacingRule (property) 125
LinesToPoints (method) 68, 198

List box 33,50

List boxes, combo boxes and drop-down lists 50
ListBox 50

ListEntries (collection) 166
ListEntries (pointer to collection) 165
ListEntry (object) 169

Locked (property) 158,258
LockText (property) 145,162
Log (function) 365
Logarithm 365

Logical And 41

Logical negation 41

Logical Or 41

Long (data type) 38
convert to 333

Lowercase 363
LTrim (function) 392

MailMerge (method) 94

Manage (button in the settings) 22
ManualApply (property) 228
MaxChange (property) 228
Maximum (property) 182,316
Maxlteration (property) 228

MB_ ABORTRETRYIGNORE 368
MB_APPLMODAL 368

MB _DEFBUTTONI1 368

MB _DEFBUTTON2 368

MB _DEFBUTTON3 368
MB_ICONEXCLAMATION 368
MB _ICONINFORMATION 368
MB_ICONQUESTION 368
MB_ICONSTOP 368

MB OK 368

MB_OKCANCEL 368

MB RETRYCANCEL 368

MB _SYSTEMMODAL 368

MB YESNO 368
MB_YESNOCANCEL 368
MergeCells (property) 258
MergeFileFormat (property) 94
MergeFileHeader (property) 94
MergeFileName (property) 94
MergePrintOut (method) 94
MergeRecord (property) 94
Message box 368

Methods (of OLE Automation objects) 56
Methods of PlanMaker, use 192
Methods of TextMaker, use 61
Mid (function) 366
MillimetersToPoints (method) 68, 198
Minute (function) 366

Index

MkDir (statement) 367 Option Explicit (statement) 38, 375
Mod (operator) 41 OptionButton 53

Mode (property) 176 OptionGroup 53

Modify (method) 297 Options (object) 75,210

Modulo 41 Options (pointer to object) 68, 198
Month (function) 367 Or 41

Move (method) 245 Or (operator) 41

MoveAfterReturn (property) 198 Orientation (property) 108, 145,252, 258
MoveAfterReturnDirection (property) 198 OutlineLevel (property) 125
MsgBox (function) 368 Output window 376

Multiplication 41 Overtype (property) 75,210

N P

Name (property) 68, 84, 89, 94, 105, 118, 158, 169, Page setup (File) 12

172, 184, 188, 198, 218, 222, 228, 240, 245, 258, 284, PageBreakBefore (property) 125
310, 319, 322

PageBreakCol (property) 258
PageBreakRow (property) 258
PageBreaks (property) 245

Name (statement) 370
Negation 41

NegativeRed (property) 279 PageCount (property) 94

New (File) 12 PageHeight (property) 108, 252
Nonprintable (property) 258 PageSetup (object) 108, 252

Not (operator) 41 PageSetup (pointer to object) 94, 245

Not equal (f)p erator) 41 PageWidth (property) 108, 252
Now (function) 370 PaperSize (property) 108, 252

Null 38, 361 . . Paragraph (object) 125
NumberFormatting (object) 279 Paragraphs (collection) 124

NumberFormatting (pointer to object) 258 Paragraphs (pointer to collection) 94

Numeric formats of the Format function 348 Parent (pointer to object) 75,79, 81, 82, 84, 85, 87, 89,
91,94, 103, 105, 108, 111, 118, 124, 125, 131, 133,

0 135, 137, 139, 141, 143, 145, 148, 151, 154, 157, 158,
162, 163, 165, 166, 169. 170, 172, 176, 181, 182, 184,

Object (data type) 38, 56 186, 188,210, 213, 214, 216, 218, 219, 220, 222, 224

Ob]ect model OfPIanMaker 196 228, 238, 240, 243, 245, 252, 258, 275, 277, 279, 284,

Object model of TextMaker 66 gg(l), ggg 294,297, 304. 305, 307. 309, 310. 316, 319.

Oct (function) 371

Octal 371 Passing parameters via ByRef or ByVal 46

Paste
Octal numbers 36 dialog 15
OK button 33, 49 document 15
OKButton 49 SmartText 15
OLE Automation 56, 59, 190, 335, 355 special characters 15
On Error (statement) 371 Paste (method) 111,258
Open (method) 184, 224,319 PasteAdjustWordSpacing (property) 75
Open (statement) 373 Path (property) 68,94, 172, 184, 198, 228, 310, 319
Open a file 373 Percentage (property) 181
Open a script 12 PicasToPoints (method) 68, 198
Operator (property) 297, 307 Pitch (property) 118,284
Operators 41 PlanMaker

Option Base (statement) 40, 375 object model 196

PlanMaker
program for 190
start BasicMaker 11

pmBorderBottom 290, 292
pmBorderHorizontal 290, 292
pmBorderLeft 290, 292
pmBorderRight 290, 292
pmBorderTop 290, 292
pmBorderVertical 290, 292
pmFormatdBaseAnsi 224, 228,316
pmFormatdBaseDOS 224,228, 316
pmFormatdBaseUnicode 224,228, 316
pmFormatDIF 224, 228, 316
pmFormatDocument 224, 228,316
pmFormatExcel5 224, 228, 316
pmFormatExcel97 224, 228,316
pmFormatExcelTemplate 224, 228, 316
pmFormatHTML 224, 228, 316
pmFormatMSXML 224, 228,316
pmFormatPlainTextAnsi 224, 228, 316
pmFormatPlainTextDOS 224, 228, 316
pmFormatPlainTextUnicode 224,228,316
pmFormatPlainTextUnix 224, 228, 316
pmFormatPlainTextUTF8 224, 228,316
pmFormatPM2008 224,228,316
pmFormatPM2010 224,228,316
pmFormatRTF 224, 228,316
pmFormatSYLK 224, 228,316
pmFormatTemplate 224,228,316
pmFormatTextMaker 224,228,316
pmHAlignCenter 258
pmHAlignCenterAcrossSelection 258
pmHAlignGeneral 258
pmHAlignJustify 258

pmHAlignLeft 258

pmHAlignRight 258
pmLineStyleDouble 292
pmLineStyleNone 292
pmLineStyleSingle 292
pmNumberAccounting 279
pmNumberBoolean 279
pmNumberCurrency 279
pmNumberCustom 279
pmNumberDate 279
pmNumberDecimal 279
pmNumberFraction 279
pmNumberGeneral 279
pmNumberPercentage 279

pmNumberScientific 279
pmNumberText 279
pmUnderlineDouble 284
pmUnderlineNone 284
pmUnderlineSingle 284
pmUnderlineWords 284
pmUnderlineWordsDouble 284
pmVAlignBottom 258
pmVAlignCenter 258
pmVAlignJustify 258

pmVAlignTop 258

Pointers to other objects, use 62, 193
Position (property) 133
PreferredLineSpacing (property) 125
PreferredSmallCaps (property) 118, 284
PreferredWidth (property) 145
PreferredWidthType (property) 145
Print # (statement) 376

Print (statement) 376

Print a script 12

Printable (property) 158
PrintHiddenText (property) 176
PrintOut (method) 94, 228
Procedure step (script) 28

Program
activate 326
start 385

Program, start 28

Programming PlanMaker 190
Programming TextMaker 59
PromptForSummarylnfo (property) 198
Properties (of OLE Automation objects) 56
Properties of PlanMaker, get and set 192
Properties of TextMaker, get and set 61

Q

Quick access toolbar 21, 22
Quit (method) 68, 198

Radio button 33, 53

Radio buttons and group boxes 53

Random number 380

Range (object) 131,258

Range (pointer to object) 125, 198, 245, 258
ReadOnly (property) 94, 228

RecentFile (object) 184,319

Index

RecentFiles (collection) 182,316 Script, edit 11
RecentFiles (pointer to collection) 68, 198 Script, start 11, 28
ReDim (statement) 377 Search 17
Redo (changes) 15 Search again 17
Rem (statement) 36, 378 Second (function) 380
RepeatAsHeaderRow (property) 141 Seek (statement) 380
Replace 17 Select (method) 94, 245, 258
ReplaceText (property) 85 Select all 15
Reset Select Case (statement) 43, 381
SoftMaker Office settings 25 Selection (object) 111
Reset (script) 28 Selection (pointer to object) 94, 198, 245
Result (property) 158 SendKeys (statement) 382
Resume (statement) 378 Separation (property) 151
RevisionsBalloonSide (property) 176 Separator (property) 292
RevisionsBalloonWidth (property) 176 Set (statement) 384
Ribbon 9 Set breakpoint (script) 29
list of all ribbon commands and menu commands SetRange (method) 111
isgegr interface 22 Settings (BasicMaker) 22

Right (function) 379 Settings (SoftMaker Office)

rt/import 25
RightMargin (property) 108, 133, 252 ::_fe(; 21r5np0
RightPadding (property) 145,258

. Sgn (function) 385
RmDir (statement) 379 Shaded (property) 157
Rnd (function) 380

: Shading (object) 154,294
RoundFinalResults (property) 228 Shading (pointer to object) 125, 137, 141, 145, 258

RoundIntermediateResults (property) 228 Sheet (object) 245

Row (object) 141 Sheet (pointer to object) 258

RowHeight (property) 258 Sheets (collection) 243

Rows (collection) 139, 275 Sheets (pointer to collection) 228
Rows (pointer to collection) 137, 198 Shell (function) 385
Rows (pointer to object) 245 Show full path in title bar 22

RTrim (function) 392 Show tooltips (for commands) 22

Runascript 28 ShowAll (property) 176
Run a script step by step. 28 ShowAllData (method) 245
Runtime error 371 ShowBookmarks (property) 176
ShowError (property) 297
S ShowGermanSpellingReformErrors (property) 75
Save (method) 94, 228 ShowGuideLinesForTextFrames (property) 228
Save a script 12 ShowHiddenObjects (property) 228
Save all (File) 12 ShowHiddenText (property) 176
Saveas 12 ShowlInput (property) 297
SaveAs (method) 94, 228 ShowParagraphs (property) 176
Saved (property) 94, 228 ShowSpaces (property) 176

ShowSpellingErrors (property) 75
ShowTabs (property) 176
ShowTextBoundaries (property) 176

Savelnterval (property) 75,210
SavePropertiesPrompt (property) 75,210
ScreenUpdate (property) 228

Script, abort 28 Sign 385
Sin (function) 386

Single
convertto 335
Single (data type) 38
Single step (script) 28
Size (property) 118, 133,284
SmallCaps (property) 118, 284

SmartText
use 19

SmartText entries
create 15

smoAnsiCharset 188, 322
Smooth edges of screen fonts 22
smoPatternHalftone 294
smoPatternHashCoarse 294
smoPatternHashDiagCoarse 294
smoPatternHashDiagFine 294
smoPatternHashFine 294
smoPatternHorzCoarse 294
smoPatternHorzFine 294
smoPatternLeftDiagCoarse 294
smoPatternLeftDiagFine 294
smoPatternNone 294
smoPatternRightDiagCoarse 294
smoPatternRightDiagFine 294
smoPatternVertCoarse 294
smoPatternVertFine 294
smoPropertyAppName 103, 238
smoPropertyAuthor 103, 238

smoPropertyAvgCharactersSentence 103

smoPropertyAvgWordLength 103

smoPropertyAvgWordsSentence 103

smoPropertyCells 238
smoPropertyChapters 103
smoPropertyCharacters 103
smoPropertyCharts 238
smoPropertyComments 103, 238
smoPropertyFootnotes 103
smoPropertyFormulaCells 238
smoPropertyKeystrokes 103
smoPropertyKeywords 103, 238
smoPropertyLines 103
smoPropertyNotes 238
smoPropertyNumericCells 238
smoPropertyPages 103, 238
smoPropertyParas 103
smoPropertyPictures 103, 238
smoPropertySections 103
smoPropertySentences 103

smoPropertySheets 238
smoPropertySubject 103, 238
smoPropertyTables 103
smoPropertyTextCells 238
smoPropertyTextFrames 103, 238
smoPropertyTimeCreated 103, 238
smoPropertyTimeLastPrinted 103, 238
smoPropertyTimeLastSaved 103, 238
smoPropertyTitle 103, 238
smoPropertyWords 103
smoQuotesAuto 75
smoQuotesEnglish 75
smoQuotesFrench 75
smoQuotesGerman 75
smoQuotesNeutral 75
smoQuotesSwiss 75
smoSymbolCharset 188, 322
smoWindowStateMaximize 68, 172, 198, 310
smoWindowStateMinimize 68, 172, 198, 310
smoWindowStateNormal 68, 172, 198, 310
SoftMaker Basic 10
Space (function) 386
SpaceAfter (property) 125
SpaceBefore (property) 125
Spacing (property) 118, 284
Special behavior of the Variant data type 38
Special keys supported by the SendKeys command 383
Sqr (function) 387
Square root 387
Start (property) 131
Start a script 28
Start BasicMaker 11
Static (statement) 40, 387
Status bar (show/hide) 22
Stop (statement) 388
Str (function) 388
StrComp (function) 389
StrikeThrough (property) 118, 284
String

compare 389

convertto 388

convert to lowercase 363

convert to number 394

convert to uppercase 394

cut 363,366, 379, 392

determine length 364
search 359

String (data type) 38
convertto 336

Index

String (function) 389 tmFormatPlainTextDOS 91, 94, 182
String formats of the Format function 353 tmFormatPlainTextUnicode 91, 94, 182
Sub (statement) 45, 389 tmFormatPlainTextUnix 91, 94, 182
Subroutines and functions 45 tmFormatPlainTextUTF8 91, 94, 182
Subscript (property) 118, 284 tmFormatPocketWordHPC 91, 94, 182
Subtraction 41 tmFormatPocketWordPPC 91, 94, 182
Superscript (property) 118,284 tmFormatRTF 91, 94, 182
SuppressMinus (property) 279 tmFormatTemplate 91, 94, 182
SuppressZeros (property) 279 tmFormatTM2006 91, 94, 182
Syntax fundamentals 36 tmFormatTM2008 91, 94, 182
tmFormatWinWord6 91, 94, 182
T tmFormatWinWord97 91, 94, 182

tmFormatWinWordXP 91, 94, 182
TabIndentKey (property) 75 tmGoToAbsolute 111

Table (object) 137 tmGoToParagraph 111
Tables (collection) 135 tmGoToRelative 111
Tables (pointer to collection) 94 tmGoToTable 111
Tabstop (property) 158 tmLineBreak 111

Tan (function) 390 tmPageBreak 111

Tangent 390 tmSectionBreak 111

Text 33,50 tmUnderlineDouble 118
Text (pr0perty) 162, 163 tmUnderlineNone 118
Text and input boxes 50 tmUnderlineSingle 118
TextBox 50 tmUnderlineWords 118

Textlnput (Obj, ect) 162 . tmUnderlineWordsDouble 118
TextInput (pointer to object) 158 Toolbars for classic menus
TextMaker user interface 22
gfg:;;ﬁ%gfl o Top (property) 68, 172, 198,258,310
start BasicMaker 11 TopMargin (property) 108, 133,252
Texture (property) 154, 294 TopPadding (property) 145, 258
Touch mode 22

Thickl (property) 151,292 :) _ _
Thick? (property) 151,292 Trim, LTrim, RTrim (function) 392

ThousandsSeparator (property) 279 True 41
Time 324 Type (property) 105, 151, 158, 176, 240, 279, 292,
determine current time 370, 391 297
determine hours 357 Type (statement) 39, 392
determine minutes 366 TypeBackspace (method) 111
determine seconds 380 TypeParagraph (method) 111
Time (function) 391 TypeText (method) 111
TimeSerial (function) 391
TimeValue (function) 391 U
tmChapterBreak 111
tmColumnBreak 111 UBound (function) 394
tmFormatDocument 91, 94, 182 UCase (function) 394
tmFormatHTML 91, 94, 182 Underline (property) 118,284
tmFormatOpenDocument 91, 94, 182 Undo (changes) 15
tmFormatOpenXML 91, 94, 182 Unicode 328, 332
tmFormatPlainTextAnsi 91, 94, 182 Uppercase letters 394

Index

Use system file dialogs 22

User interface (ribbon or menus?) 22
User-defined data types 39
UserProperties (collection) 79, 213
UserProperties (pointer to object) 68, 198
UserProperty (object) 81,214

v

Val (function) 394

Valid (property) 105, 162, 163, 165, 240
Validation (object) 297

Validation (pointer to object) 258

Value (property) 81, 89, 105, 163, 165, 214, 222, 240,
258,297

Value2 (property) 258
Variable window 20
Variable window (View) 29
Variables 40

Variant (data type) 38
determine 395

VarType (function) 38, 395

VBA 10, 12

Version management 22

Vertical Alignment (property) 145, 258
VerticalText (property) 258

View (object) 176

View (pointer to object) 172

Visible (property) 68, 84, 158, 198, 218
Visual Basic for applications 10, 12

w

WarningOnError (property) 198

Watch variables 29

Weekday (function) 396

What is BasicMaker? 10

While ... Wend (statement) 43, 396
WidowControl (property) 125

Width (property) 68, 145,172,198, 310
Window (object) 172,310

Windows
close all 20

Windows (collection) 170, 309

Windows (pointer to collection) 68, 198
WindowState (property) 68, 172, 198, 310
With (statement) 39, 64, 195, 396
Workbook (object) 228

Workbook (pointer to object) 258,310

Workbooks (collection) 224
Workbooks (pointer to collection) 198
WrapText (property) 258
WrapToWindow (property) 176
Write # (statement) 397

Y

Year (function) 398

/4

Zoom (object) 181
Zoom (pointer to object) 176
Zoom (property) 310

	Table of Contents
	Welcome!
	What is BasicMaker?

	Using the script editor
	Starting BasicMaker
	Commands on the File ribbon tab
	Using the file manager

	Commands on the Home ribbon tab
	Searching and replacing in the script editor
	Bookmarks and the Go to... command
	Using SmartText

	Commands on the View ribbon tab
	Commands on the Quick access toolbar
	Changing the settings of the script editor
	Exporting/importing settings
	Starting scripts
	Debugging scripts
	Running a script step by step
	Using breakpoints
	Watching variables

	Using the dialog editor
	General information
	Opening/closing the dialog editor
	Commands in the File menu of the dialog editor
	Commands in the Edit menu of the dialog editor
	Commands in the Insert menu of the dialog editor

	Language elements of SoftMaker Basic
	Syntax fundamentals
	Data types
	Special behavior of the Variant data type
	User-defined data types

	Variables
	Arrays
	Operators
	Flow control
	Subroutines and functions
	Passing parameters via ByRef or ByVal

	Calling functions in DLLs
	File operations
	Dialog boxes
	Dialog definition
	Controls of a dialog box
	Command buttons
	Text and input boxes
	List boxes, combo boxes and drop-down lists
	Check boxes
	Radio buttons and group boxes

	The dialog function

	OLE Automation

	BasicMaker and TextMaker
	Programming TextMaker
	Connecting to TextMaker
	Getting and setting TextMaker properties
	Using TextMaker’s methods
	Using pointers to other objects
	Using collections
	Hints for simplifying notations

	TextMaker’s object model
	Application (object)
	Options (object)
	UserProperties (collection)
	UserProperty (object)
	CommandBars (collection)
	CommandBar (object)
	AutoCorrect (object)
	AutoCorrectEntries (collection)
	AutoCorrectEntry (object)
	Documents (collection)
	Document (object)
	DocumentProperties (collection)
	DocumentProperty (object)
	PageSetup (object)
	Selection (object)
	Font (object)
	Paragraphs (collection)
	Paragraph (object)
	Range (object)
	DropCap (object)
	Tables (collection)
	Table (object)
	Rows (collection)
	Row (object)
	Cells (collection)
	Cell (object)
	Borders (collection)
	Border (object)
	Shading (object)
	FormFields (collection)
	FormField (object)
	TextInput (object)
	CheckBox (object)
	DropDown (object)
	ListEntries (collection)
	ListEntry (object)
	Windows (collection)
	Window (object)
	View (object)
	Zoom (object)
	RecentFiles (collection)
	RecentFile (object)
	FontNames (collection)
	FontName (object)

	BasicMaker and PlanMaker
	Programming PlanMaker
	Connecting to PlanMaker
	Getting and setting PlanMaker properties
	Using PlanMaker’s methods
	Using pointers to other objects
	Using collections
	Hints for simplifying notations

	PlanMaker's object model
	Application (object)
	Options (object)
	UserProperties (collection)
	UserProperty (object)
	CommandBars (collection)
	CommandBar (object)
	AutoCorrect (object)
	AutoCorrectEntries (collection)
	AutoCorrectEntry (object)
	Workbooks (collection)
	Workbook (object)
	DocumentProperties (collection)
	DocumentProperty (object)
	Sheets (collection)
	Sheet (object)
	PageSetup (object)
	Range (object)
	Rows (collection)
	Columns (collection)
	NumberFormatting (object)
	Font (object)
	Borders (collection)
	Border (object)
	Shading (object)
	Validation (object)
	AutoFilter (object)
	Filters (collection)
	Filter (object)
	Windows (collection)
	Window (object)
	RecentFiles (collection)
	RecentFile (object)
	FontNames (collection)
	FontName (object)

	Statements and functions from A to Z
	#include (statement)
	Abs (function)
	AppActivate (statement)
	AppPlanMaker (function)
	AppSoftMakerPresentations (function)
	AppTextMaker (function)
	Asc (function)
	Atn (function)
	Beep (statement)
	Begin Dialog ... End Dialog (statement)
	Call (statement)
	CDbl (function)
	ChDir (statement)
	ChDrive (statement)
	Chr (function)
	CInt (function)
	CLng (function)
	Close (statement)
	Const (statement)
	Cos (function)
	CreateObject (function)
	CSng (function)
	CStr (function)
	CurDir (function)
	Date (function)
	DateSerial (function)
	DateValue (function)
	Day (function)
	Declare (statement)
	Dialog (function)
	Dim (statement)
	DlgEnable (statement)
	DlgText (statement)
	DlgVisible (statement)
	Do ... Loop (statement)
	End (statement)
	EOF (function)
	Erase (statement)
	Exit (statement)
	Exp (function)
	FileCopy (statement)
	FileLen (function)
	Fix (function)
	For Each ... Next (statement)
	For ... Next (statement)
	Format (function)
	Numeric formats of the Format function
	Date/time formats of the Format function
	String formats of the Format function

	FreeFile (function)
	Function (statement)
	GetObject (function)
	Gosub ... Return (statement)
	Goto (statement)
	Hex (function)
	Hour (function)
	If ... Then ... Else (statement)
	Input (function)
	InputBox (function)
	InStr (function)
	Int (function)
	IsDate (function)
	IsEmpty (function)
	IsNull (function)
	IsNumeric (function)
	Kill (statement)
	LBound (function)
	LCase (function)
	Left (function)
	Len (function)
	Let (statement)
	Line Input # (statement)
	Log (function)
	Mid (function)
	Minute (function)
	MkDir (statement)
	Month (function)
	MsgBox (function)
	Name (statement)
	Now (function)
	Oct (function)
	On Error (statement)
	Open (statement)
	Option Base (statement)
	Option Explicit (statement)
	Print (statement)
	Print # (Statement)
	ReDim (statement)
	Rem (statement)
	Resume (statement)
	Right (function)
	RmDir (statement)
	Rnd (function)
	Second (function)
	Seek (statement)
	Select Case (statement)
	SendKeys (statement)
	Special keys supported by the SendKeys command

	Set (statement)
	Sgn (function)
	Shell (function)
	Sin (function)
	Space (function)
	Sqr (function)
	Static (statement)
	Stop (statement)
	Str (function)
	StrComp (function)
	String (function)
	Sub (statement)
	Tan (function)
	Time (function)
	TimeSerial (function)
	TimeValue (function)
	Trim, LTrim, RTrim (function)
	Type (statement)
	UBound (function)
	UCase (function)
	Val (function)
	VarType (function)
	Weekday (function)
	While ... Wend (statement)
	With (statement)
	Write # (statement)
	Year (function)

	Appendix
	Ribbon commands and corresponding menu commands
	Color constants
	Color constants for BGR colors
	Color constants for index colors

	Command-line parameters

	Index

